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String Matching Algorithms

* The naive string matching Algorithms

* The Rabin Karp algorithm

* String matching with finite automata

* The knuth-Morris-Pratt algorithm

* Longest common subsequence algorithm

PATTERN MATCHING ALGORITHM

We are given a text string T of length n & a pattern string P of length m, and we want to find whether

P is a substring of T.

Brute Force
Algorithm BruteForceMatch(T, P):
Input: Strings T (text) with n characters and P (pattern) with m characters
Output: Starting index of the first substring of 7 matching P, or an indication
that P is not a substring of T

for i « 0 to n — m {for each candidate index in 7'} do
j=0
while (j <mand T[i+ j| = P|j]) do
Fe=ij+1
if j=m then
return i
return “There is no substring of T matching P.”

The outer loop runs for all the characters of text and the inner loop runs through the pattern
array incrementing by 1 each time a match is obtained.

Performance

The outer for loop is executed at most n — m+ 1 times, and the inner loop is executed at most m
times. Thus, the running time of the brute-force method is O((n — m+ 1)m), which is simplified

as O(nm). Note that when m = n/2, this algorithm has quadratic running time O(nz).

Example

T = "abacaabaccabacabaabb”
and the pattern string

P= "abacab".

Al s low Lol s®
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1.1 Rabin-Karp algorithm

Rabin-Karp string searching algorithm calculates a numerical (hash) value for the pattern p,
and for each m-character substring of text t. Then it compares the numerical values instead of
comparing the actual symbols. If any match is found, it compares the pattern with the substring
by naive approach. Otherwise it shifts to next substring of f to compare with p
We can compute the numerical (hash) values using Horner’s rule.
Lets assume, hg = k
hy=d(k—p[1].d" ')+ pm+1]
Suppose, we have given a text £ = [3, 1,4, 1, 5, 2] and m = 5, q = 13;
tg = 31415
So t; = 10(31415 - 10°~1.t[1]) + t[6+1]
= 10(31415 — 10*.3) + 2
= 10(1415) + 2 = 14152
Here p and substring f; may be too large to work with conveniently. The simple solution is,
we can compute p and the t; modulo a suitable modulus q.
So for each ¢,
hivi=(d(h; —t[i+1].d™ ')+ t[m +i+1]) mod q
The modulus q is typically chosen as a prime such that d.q fits within one computer word.
Algorithm
Compute h,, (for pattern p)
Compute h; (for the first substring of ¢+ with m length)
Fori =1ton—m

If hp = h.;
Match t[i....i +m] with p, if matched return 1
Else

he = (d(he —t[i+1].d™ ')+ t[m+i+1]) mod q
End
Suppose, t= 2359023141526739921 and p = 31415,
Now, h, =7 (31415 = 7 (mod 13))

substring beginning at position 7 = valid match

Al s low Lol s®
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This algorithm has a significant improvement in average-case running time over naive ap-

th

proach.

The Rabin-Karp algorithm has the complexity of O(nm) where n, of course, is the length of the text,
while m is the length of the pattern

3 Reasons Why Rabin-Karp is Cool

1. Good for plagiarism, because it can deal with multiple pattern matching!
2. Not faster than brute force matching in theory, but in practice its complexity is O(n+m)!
3. With a good hashing function it can be quite effective and it's easy to implement!

2 Reasons Why Rabin-Karp is Not Cool

1. There are lots of string matching algorithms that are faster than O(n+m)
2. It's practically as slow as brute force matching and it requires additional space

Knuth - Morris - Pratt (KMP) Algorithm

The failure function f(j) is defined as the length of the longest prefix of P that isasuffix of P[1..j]

Consider the pattern string P = "abacab". The Knuth-Morris-Pratt (KMP) failure function f(j) for the
string P is as shown in the following table:

jlo1 2 3 45
) P[;] a b a ¢ a b
Yo o 1 0 1 2
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Algorithm KMPMatch(T, P):

Input: Strings T (text) with n characters and P (pattern) with m characters
QOutput: Starting index of the first substring of 7 matching P, or an indication

that P is not a substring of 7
f « KMPFailureFunction(P) {construct the failure function f for P}
i—0
j—0
while i <n do

if P|j| = T'[i| then

if j=m — 1 then

returni—m+ | {a match!}
{—i+1
J¥—j+1
else if j > 0 {no match, but we have advanced in P} then
j—Jfj—-1) {Jj indexes just after prefix of P that must match}
else
i—i+1

return “There is no substring of 7" matching P.”

The KMP pattern matching algorithm, shown above, incrementally processes the text string T
comparing it to the pattern string P. Each time there is a match, we increment the current indices. On the
other hand, if thereis a mismatch and we have previously made progressin P, then we consult the

failure function to determine the new index in P where we need to continue checking P against T.
Otherwise (there was a mismatch and we are at the beginning of P), we simply increment the index for T
(and keep the index variable for P at its beginning). We repeat this process until we find amatch of P in
T or the index for T reaches n, the length of T (indicating that we did not find the pattern PinT).

[afvfafcfafafvafefcfafbfac afb]aafb]b]
1 2 3 4 5 &
Lalbfafcfafb]

7
»[afbfafcfalb]
8 9 10 11 12
lafbfafefalb]

no companson
needed here 13
lalblafcfafb]
14 15 16 17 18 19
lafblafcfalb]
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Algorithm KMPFailureFunction(P):
Input: String P (pattern) with m characters
QOutput: The failure function / for P, which maps j to the length of the longest
prefix of P that is a suffix of P[1../]
i—1
j«0
f(0)—0
while i <m do
if P[j] = Pli] then
{we have matched j + | characters}
Si) = j+1
i—i+1
J+=Ji+1
else if j > 0 then
{ j indexes just after a prefix of P that must match}
Ja=iij—1)
else
{we have no match here}
Ji) <=0
ie—i+1

Performance

For the sake of the analysis, let usdefine k =i —j. Intuitively, k is the total amount by which the pattern
P has been shifted with respect to the text T. Note that throughout the execution of the algorithm, we
have k < n. One of the following three cases occurs at each iteration of the loop.

« If T[i] = P[j], then i increases by 1, and k does not change, since | aso increases by 1.

« If T[i] #P[j] and ] > O, then i does not change and k increases by at least 1, sincein this case k
changesfromi —jtoi — f(j — 1), which isan addition of ] — f(j — 1), which is positive because f(j — 1)
<]j.

« If T[i] £ P[j] andj =0, then i increases by 1 and k increases by 1, since j does not change.

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly both); hence, the total
number of iterations of the while loop in the KMP pattern matching algorithm is at most 2n.

Algorithm KMPFai | ur eFuncti on runsin O(m) time. Its analysisis analogous to that of algorithm
KMPMat ch. Thus, we have:

The Knuth-Morris-Pratt algorithm performs pattern matching on atext string of length n and a
pattern string of length min O(n + m) time.

Al s low Lol s®
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TEXT SIMILARITY TESTING

A common text processing problem, which arises in genetics and software engineering, is to test
the similarity between two text strings. In a genetics application, the two strings could correspond to
two strands of DNA, which could, for example, come from two individuals, who we will consider
genetically related if they have a long subsequence common to their respective DNA sequences.

The specific text similarity problem we address here is the longest common subsequence (LCS)
problem. In this problem, we are given two character strings,

X =XoX1X2 ... Xn-1 and Y =YoY1Y2 ... Ym-1,
over some alphabet (such as the alphabet {A,C, G, T} common in computational genetics) and are asked
to find a longest string S that is a subsequence of both X and Y.

Longest Common Subsequence Problem

Brute Force

One way to solve the longest common subsequence problem is to enumerate all subsequences
of X and take the largest one that is also a subsequence of Y. Since each character of X is either
in or not in a subsequence, there are potentially 2 different subsequences of X, each of which
requires O(m) time to determine whether it is a subsequence of Y. Thus, this brute-force
approach yields an exponential-time algorithm that runs in O(2"m) time, which is very
inefficient.

Dynamics Programming

L]1-1]10]1]12]|3|4|5|6|7|8[9]10]11
-11]0(0(0(0|O|O(O[O0O[0(0|O0| O] 0
0 QL1011 X1E1R12101011 1 l
T foli[i2[2[2[2[2[2[2[ 2|2 0123456789101
Y=CGATAATTGAG.
210101111 1212|1213|3131313] 3
J P11 121212131313131313
X=GTTCCTAATA
41011111 12]12|2|3|3|3|3]|3]|3 0123456789
Oj1]11112]12(2|3|14 (4|41 4] 4
1011111212133 1314|415] 5 5
i ?“ -—ﬁ -l— " lF ll-uj —T* I I -4 :4- .5 ‘5“ 6"
8 OI111112131314]|S5I5I5151S5 6
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If X[i] = Y [j] then
Llijl=Lli=1j= 1]+ Lafx; =y

If X[i] # Y[j] then
L[i, jl=max{L[i —1,j], L[i, j—1]}

Performance: Given a string X of n characters and a string Y of m characters, we can find the longest
common subsequence of X and Y in O(nm) time.

Justification: Algorithm LCS computes L[n — 1,m — 1], the length of a longest common subsequence,
in O(nm) time. Given the table of L[i, j] values, constructing a longest common subsequence is
straightforward. One method is to start from L[n, m] and work back through the table, reconstructing
a longest common subsequence from back to front. At any position L[i, j], we can determine whether
X[i] =Y][j] . If this is true, then we can take X[i] as the next character of the subsequence (noting that
X[i] is before the previous character we found, if any), moving next to L[i — 1, j — 1]. If X[i] # Y[j], then
we can move to the larger of L[i, j — 1] and L[i —1,j]. We stop when we reach a boundary cell (with i =
— 1 or j = —1). This method constructs a longest common subsequence in O(n + m) additional time.

Algorithm LCS(X,Y):
Input: Strings X and ¥ with n and m elements, respectively
Output: Fori=0,....n—1, j=0,...,m~— 1, the length L[i, j] of a longest
string that is a subsequence of both the string X[0..i] = xx)x; < --x; and the
string Y|[0../] =yoyiy2---y;
fori«~——lton—1do
Lii,~1] +~0
for j— Otom—1do
L[-1,/] <0
fori—0Oton—1do
for j—0Otom—1do
if x; = y; then
Lii,jl—Lli—1,j—-1]+1
else
Li, j] < max{L[i—1,j], L[i,j— 1]}
return array L

www.navlakhi.com / www.navlakhi.mobi Page |8 ISCGAY IcAhI ]
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Greedy Method

* General Method

* Knapsack problem

* Job sequencing with deadlines

* Minimum cost spanning trees-Kruskal and prim’s algorithm
* Optimal storage on tapes

* Single source shortest path

GENERAL METHOD

Algorithm Greedy(a,n)
// a[l : n] contains the n inputs.

solution := (; // Initialize the solution.
for i:=1to n do

x := Select(a);
if Feasible(solution, =) then
solution := Union(solution, z);

return solution;

The greedy algorithm works in stages, considering one input at a time. At each stage, a decision is
made regarding whether a particular input is in an optimal solution. If the inclusion of the next input
into the partially constructed optimal solution will result in an infeasible solution, then this into is not
added to the partial solution. Otherwise, it is added.

e.g. consider that Rs.33 are to be paid by a customer to a shopkeep & he hands over a Rs.100. Hence
the shopkeeper needs to return back Rs.67. In the greedy approach we are trying to minimize the
number of currency notes (or coins) given. Note the full amount Rs.67 has to be paid back, then only
it's a feasible solution. But naturally the shopkeeper returns Rs.67 by first paying back Rs.50, then
Rs.10, then Rs.5 & then two Rs.2 coins. Greedy approach is often a very natural approach to solving a
problem.

Al s low Lol s®
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KNAPSACK PROBLEM

There are n objects and a knapsack (or bag) available. Each object has an associated weight(wi) &
profit(pi). Each knapsack has a maximum capacity it can carry. Whatever algorithm we may use we
have to try to

maximize Z PiTi
1<i<n

+ subject to Z Wik <M
1<i<n

and 0<z; <1, 1<:1<n

The profits and weights are positive numbers.

Consider the following problem n=3, m=20, (p1,p2,p3)=(25,24,15), and (w1,w2,w3)=(18,15,10). The
problem can be solved in 4 ways, all feasible but only one is optimal

Option 1: Ordered by profit

pl=25 w1=18
p2=24 w2=15
p3=15 w3=10

We select item 1 first, as its expected to grow the profit the maximum. Thus the knapsack capacity
was 20, but now after inserting item1 its 20 - 18 =2. These 2 units will be taken from item?2 resulting in
a profit of 2/15*24 = 3.2. Thus the total profit is 25+3.2 = 28.2

Option 2: Ordered by descending on weight

In order to accommodate most items we can choose by decrasing weights

w3=10 p3=15
w2=15 p2=24
wl=18 pl=25

We select item 3 first, the knapsack capacity is 20 & after adding item3 its 20 - 10=10. Now adding
item2 the profit is totally 15 + (10/15) 24 = 31. The answer turned out to be more than optionl, hence
optionl wasn’t optimal.

Al s low Lol s®
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Option 3: Ordering by profit by weigth ratio

p2/w2=1.6 w2=15 p2=24
p3/w3=1.5 w3=10 p3=15
pl/w1=1.39 w1=18 p1=25

We choose item?2 in our knapsack. The knapsack capacity from 20 is now reduced to 20 - 15 = 5. Now
we choose item3. The total profit is 24 + 5*1.5 = 31.5. Hence Option 2 was feasible but not optimal.

Irrespective of the ordering (assuming that the elements are ordered in the option of choice), greedy
algoritm can be implemented as follows:

Algorithm GreedyKnapsack(m,n)

4

for 2 :=1 to n do z[i] :== 0.0; // Initialize x.
U = m; |
for i :=1tondo

t %w[i] U) then break;

if >
=1.0; U :=U — wli;

£ [

(i <n) then z[i] == U/wli];

[

i

:.;‘-v-’

KRUSKAL’S ALGORITHM

The objective is to construct a minimum cost tress from a given graph. The graph is entered in a form
of a n X n matrix with the weights entered for corresponding row & column representing the
corresponding nodes of the graph. Consider the following graph

www.navlakhi.com / www.navlakhi.mobi Page |11 ISCGAY IcAhI ]
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We start choosing the cheapest edge firsti.e. 1 - 6. Then the next cheapest & so on... At each step no
loops should be formed. If a loop is being formed at any step, we discard that selection & look for the
next cheapest edge. This technique is demonstrated below

bl emena aeanBame s e danlan. s

B L s T L Y R RO R

§ P T e P s

s

12égure 4.9 Stages in Kruskal’s algorithm

The final answer being
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The basic algorithm being

t .=
whi]e’ ((t has less than n — 1 edges) and (E # 0)) do
{

Choose an edge (v, w) from E of lowest cost;

Delete (v, w) from E;
if (v, w) does not create a cycle in ¢ then add (v,w) tot; -
else discard (v, w);

A more detailed implementation can consider making a min heap for selecting the minimum & then
to reheapity it for getting the next minimum & so on. The algorithm is shown below:

Algorithm Kruskal{ &2, cost, 7, t}

{
Construct a heap out of the edge costs using Heapify;
for i := 1 to n do parent[d] :— - 1;
// Bach vertex is in a different set.
1= 0 mincost :— 0.0
while ((i < n— 1) and (heap not cinpty)) do
Delete o minimurn cost edge (u,1:) from the heap
and reheapify using Adjust;
3 = Find(u); k := Find(#);
if (3 # k) then
i:=14+1
ti, L] i= g 4, 2] = vy
mincost = mincost + costlu. v;
Union(4, k):
}
if (i #n — 1) then write ("No spanning tree™);
clse return mincost;
}

Find(u) and Find(v) check to see it the two already exists & helps in deciding to know if inserting the
new edge would create any loop. j and k represent the sets to which the vertices u & v belong. If the
sets are the same (i.e. j=k) then the current edge will result in a loop, hence discarded. But, if j#k,
implies that u & v belong to different sets, hence the current edge can be inserted into the forest. Our
final objective is to generate a tree if minimum cost, but the intermediate stages may not be a tree.

Performance

Maintaining the structure as a heap allows us to find the next edge in O(log | E|) time. The heap
construction will take O(| E|) time. Hence the worst case time is O(| E |log | E|)

Al s low Lol s®
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PRIM’S ALGORITHM

This is another method for creating a MST (minimum spanning tree). Here we start off with the least
cost edge and then we proceed from any visited node (i.e. node in the tree) to any unvisited node (not
in the tree) which has the next cheapest cost. Since we are going from an existing to a new node, there
are no chances of loop formation, hence the need to detect loops no longer exists in Prim’s algorithm.

Considering the same example we show how to solve a problem involving Prim’s algorihm

(1) 28
:7"4)\\',"'2‘\

/ )
10 i
/ 14/}4 16
raF “'\. s
(&) (1) 3)

\'\._ 24 "’f ll‘, /
2530 \18/12

G 1/

10
5 O & 9 O O @ @
25 25
@ 5 5
@ @ 22 74
(a) (b) (c)
1) ‘ | _l)
10 @ : 10
g O O
25 2 25
22 14) 22
(d) ()
Figure 4.8 Stages in Prim’s algorithm
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Algorithm Prim(E, cost,n, t) .

/ E is the set of edges in G. cost[l:n,1:n]is thecost ~
// adjacency matrix of an n vertex graph such that 'cost[z, j] is
// either a positive real number or oo if no edge (i,7) exists.

// A minimum spanning tree is computed_ and s_torec_! as a set o'f
// edges in the array t[1 :n —1,1:2]. (¢[,1],¢[z, 2]) is an edge in
// the minimum-cost spanning tree. The final cost is returned.
t Let (k,1) be an edge of minimum cost in Ej
mincost := cost[k,];
t[1,1] := k; t[1,2] := I3
for i := 1 to n do // Initialize near.
if (cost[i,l] < costli, k]) then near[d] := [;
else near(i] := k;
near[k] := near(l] := 03
for i:=2ton—1do
{ // Find n — 2 additional edges for ¢.
Let j be an index such that near[j] # 0 and
cost[j, near[j]] is minimum;
t[i, 1] == j; t[¢, 2] == near(jl;
mincost := mincost + cost|j, near|j]];
near(j] := 0;
for k := 1 to n do // Update near| |. ’
if ((near[k] # 0) and (cost[k, near[k]] > cost[k, j]))
then near(k] := j;
}

return mincost;

ithm 4.9 Prim’s minimum-cost spanning tree algorithm

As can be seen we start from the edge with minimum cost (k,1). Array tis a 2 column array with column
1 representing the source & column 2 the destination. Thus the source of the 1st edge of the tree t[1,1]=k
and the destination of this 1t edge is t[1,2]. Each vertex - vertex pair has a cost associated with it (finite
positive if the edge exists & +oo if the edge does not exists between the pair of vertices). Once the first
edge is selected the neighbor of each vertex is set to either k or 1 depending on who is more cheaper (in
terms of cost). [Note Prims algorithm chooses edges from visited to non-visited node, hence each
unvisited node neighbor has to be one of the visited nodes]. For the remaining n -2 edges (to connect n
nodes we need n - 1 edges) we repeat a similar procedure of finding minimum cost between some j &
near[j] (note near[j] will always be visited node) for near[j]#0 (all unvisited nodes have near|[j] as non-

zero, hence j is the unvisited node). We choose the j, update the array t to aiﬁli f i i:

notheredge & pdate
www.navlakhi.com / www.navlakhi.mobi Page |15 ISCGAY IcAhI ]
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near([j] to 0 & also update the near array for all unvisited vertices if they are nearer to this newly chosen
node instead of the previously chosen node (Note near[unvisited]=closest visited node).

Performance

Prims, in the above form, take time O(n?). The for loop of i going from 2 to n - 1 internally has 2
independent (not nested) loops first of time O(n) & the other time O(|E|) (one to find jindex & the
other to update ‘near’). This the total time take is O(n?).

If the unvisited (non - tree) nodes are stored in a more efficient structure like a red - black tree then the
searching time is O(log n) & the updating of near has to examine only nodes adjacent to j hence the
time there is O(| E|) and O(log n) for updating. Hence the total time is O((n+ | E|) log n).

Al s low Lol s®
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SINGLE SOURCE SHORTEST PATH (Dijkstra)

We are given a directed graph G=(V,E), a weighting function cost of edges of G, and a source vertex

Vo. The problem is to determine the shortest paths from v, to all the remaining vertices of G. It is
assumed that all the weights are positive.

43
100 T
~ 2’} /,-;*;;/' Path Length
35,77 /30 1.4 10
/ e 2) 1,4,5 25
_ ,ff,_/‘ o 3) 1,4,5,2 45
IR 4 1,3 45
(a) Graph (b) Shortest paths from 1

Graph and shortest paths from vertex 1 to all destinations

Algorithm ShortestPaths(v, cost, dist, n)
// dist[j], 1 < j <n, is set to the length of the shortest
// path from vertex v to vertex j in a digraph G with n
// vertices. dist[v] is set to zero. G is represented by its
// cost adjacency matrix cost[l:n,1:n].

for i :=1to n do

{ // Initialize S.
S[i] := false; dist[i] := cost[v, s

%’[v] .= true; dist[v] ;= 0.0; // Put vin S.
for num := 2 to n do
{ .
// Determine h — 1 paths from v.
Choose u from among those vertices not
in S such that dist[u] is minimum;
Sfu] := true; // Put u in S.
for (each w adjacent to u with S[w] = false) do
/ Update distances.
if (dist[w] > dist[u] + cost[u,w])) then
dist[w] = dist[u] + cost[u,w];

Aleas v lonlola5®
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Performance

Time taken by the algorithm on a graph with n vertices is O(n2). The second for loop is executed n - 2
times & each execution requires O(n) time to find the minimum distance & update the distances. Thus
the asymptotic time would be O(n2).

If a more efficient storage structure like a adjacency list is used then the update of distance would
take O(| E|) time, since dist can change only for the vertices adjacent from u. If V - S is maintained in
a red - black tree, then, finding the minimum would take O(log n) time. But this has to be done
approx. n times, thus O(n log n). Updating an edge would also take O(log n) time & since there are

| E| edges to update, the time for update is O(| E | log n). Thus the total time would be

Omlogn+ |E| logn) =0O((n+ |E|)logn)

Al s low Lol s®
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JOB SCHEDULING WITH DEADLINES

Theorem 4.6 Function JS is a correct implementation of the greedy-based
method described above,

Proof: Since d[i] > 1, the job with the largest p; will always be in the
greedy solution. As the jobs are in nonincreasing order of the p;’s, ling

1 Algorithm JS(d, j,n)

2 //dli = 1,1 <1< n are the deadlines, n > 1. The jobs

3 // are ordered such that p[1] > p[2] > --- > p[n]. Ji]

4 // is the ith job ih the optimal Solutlon, 1 g 1< k.

5 // Also, at termination d[J[f]] < d[J[i +1]], 1 < i < k.

6

7 d[0] := J[0] := 05 // Initialize.

8 J(1] := 15 // Include job 1.

9 =1

10 for i := 2 to n do

11 {

12 // Consider jobs in nonincreasing order of p[i]. Find
13 // position for ¢ and check feasibility of insertion.

14 7= k3

15 while ((d[J[r]] > d[i]) and (d[J[r]] # 7)) dor =71 —1;
16 if ((d[J[r]] < d[i]) and (d[i] > r)) then

17

18 // Insert i into J[ |.

19 for ¢:=k to (r+1) step —1 do Jlg+ 1] := J[g|;
20 Jr+l]:=4k=k+1;

21

22

23 ‘return k;

24 }

Algorithm 4.7 Greedy algorithm for sequencing unit time jobs with dead-
lines and profits

. 8 in Algorithm 4.7 includes the job with largest p;. The for loop of line
.10 considers the remaining jobs in the order required by the greedy method
i described earlier. At all times, the set of jobs already included in the solution
| is maintained in J. If J[i], 1 < i <k, is the set already included, then J is
i such that d[J[i]] < d[J[i + 1]], 1 < i < k. This allows for easy application
. of the feasibility test of Theorem 4.4. When job 7 is being considered, the
i while loop of line 15 determines where in J this job has to be inserted. The
i use of a fictitious job 0 (line 7) allows easy insertion into position 1. Let w
¢ be such that d{J[w]] < d[i] and d[J[q]] > d[i], w < ¢ < k. If job i is included
* into J, then jobs Jlg], w < ¢ < k, have to be moved one position up in J
" (line 19). From Theorem 4.4, it follows that such a move retains feasibility
©of Jiff d[J[q]] # q, w < ¢ < k. This condition is verified in line 15. In

Al s low Lol s®
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addition, ¢ can be inserted at position w -+ 1 iff d[i] > w. This is verified in
line 16 (note r = w on exit from the while loop if d[J[q]] # ¢, w < q < k).
The correctness of JS follows from these observations. 0

This rule simply delays the
processing of job ¢ as much as possible. Consequently, when J is being built
up job by job, jobs already in J do not have to be moved from their assigned
slots to accommodate the new job. If for the new job being considered there
is no o as defined , then it cannot be included in J.

. ample 4.6 Let n = 5,(py,...,p5) = (20,15,10,5,1) and (di,...,ds)
=(2,2,1,3,3). Using the above feasibility rule, we have

o assigned slots job considered action profi

1] none 1 assign to [1, 2] 0

{1} 11, 2] 2 assign to [0, 1] 20

{1, 2} [0, 1], {1, 2] 3 cannot fit; reject 35

{11, 2} [0, 1], [1, 2] 4 assign to [2, 3 35

{1, 2,4} [0,1], [1, 2], {2, 3] 5 reject 40

The optimal solution is J = {1,2,4} with a profit of 40. O
BAlnnslon lolai®
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OPTIMAL STORAGE ON TAPES

4.7 OPTIMAL STORAGE ON TAPES

There are n programs that are to be stored on a computer tape of length
 I. Associated with each program i is a length [;,1 < i < n. Clearly, all
programs can be stored on the tape if and only if the sum of the lengths of
- the programs is at most [. We assume that whenever a program is to be
retrieved from this tape, the tape is initially positioned at the front. Hence,

Example 4.11 Let n = 3 and (I1,02,l3) = (5,10,3). There are n! = 6
. possible orderings. These orderings and their respective d values are:

ordering [ d(I)
1,23 5+5+10+5+104+3 = 38
1,3,2 54+5+3+54+3+10 = 31
2.1.3 10+10+5+10+5+3 = 43
9.3.1 10+10+34+10+3+5 = 4l
3,1,2 3+3+54+3+54+10 = 29
8.9.1 3+3+10+3+10+5 = 34
* The optimal ordering is 3,1, 2. O
-1 Algorithm Store(n,m) -
2 // nis the number of programs and m the number of tapes.
3
4 J :=0; // Next tape to store on
5 for i :=1 to n do
6 {
7 write ("append program", i,
8 "to permutation for tape", j);
9 Jj:=(7+1) mod m;
10
11 }
Algorithm %ﬂsignimg programs to tapes
!
Blenn e loben
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Backiracking

The general method
8 queens problem
Sum of subsets
Graph colouring

N-QUEENS PROBLEM

The objective is to place N Queens on a N X N chessboard so that no queen kills any other queen.
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1 Algorithm Place(k,1)

2 // Returns true if a queen can be placed in kth row and
3 // ith column. Otherwise it returns false. z[ ] is a

4 // global array whose first (k — 1) values have been set.
5 // Abs(r) returns the absolute value of r.

6

7 for j:=1to k—1do

8 if ((z[s] =¢) // Two in the same column

9 or (Abs(z[j] — 1) = Abs(j — k)))

10 // or in the same diagonal

11 then return false;

12 return true;

13 }

Algorithm 7.4 Can a new queen be placed?

L
1 Algorithm NQueens(k,n)
2 // Using backtracking, this procedure prints all
3 // possible placements of n queens on an n x n
4  // chessboard so that they are nonattacking.
5 A
6 for i:=1to ndo
T
8 if Place(k,i) then
9
10 ikl =
11 if (k = n) then write (z[1 : n]);
12 else NQueens(k + 1,n);
13 }
14
15 }

Algorithm 7.5 All solutions to the n-queens problem

Rl s low Lola 5®
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BACKTRACKING - SUM OF SUBSETS

1 Algorithm SumOfSub(s, k,7)

2 // Find all subsets of w|1 : n] that sum to m. The values of z[j],
i 3 //1<j <k, have already been determined. s = Zf;ll wlj] * z[j]
. 4 //andr =37 wlj]. The w[j]’s are in nondecreasing order.
=5 //Itis assumed that w([l] < m and Y1, w[i] > m.
. 6
e T // Generate left child. Note: s+ w[k] < m since By_; is true.
5 8 -tk =1y
.9 if (s + w[k] = m) then write (z[1: k]); // Subset found
10 // There is no recursive call here as w[j] >0, 1 < j < n.
P 11 else if (s + wik] + w[k + 1] < m)
12 then SumOfSub(s + w(k], k + 1,7 — w[k]);
P13 // Generate right child and evaluate B.
14 if ((s +r —w[k] > m) and (s + wlk + 1] < m)) then
L 15
- 16 z[k] := 0;
17 SumOfSub(s, k + 1,7 — wk]);
L 18
19 }

%;:Algorithm 7.6 Recursive backtracking algorithm for sum of subsets:pfob-
:lem ] ",ng;x,::'?" i

The problem is to figure out, given a set of subsets each with weights w[i], can there be a combination
that can add up to m. The weights are already sorted in ascending order. We start with the 1t item,
i.e. k=1. For any k, we select the item by setting x[k]=1. The condition to stop recursion (when we get
a feasible solution) is when the sum so far (i.e. s) plus this new item’s weight w[k] equals m, we stop
& display the list. If we haven’t reached a solution & the weight so far + w[k]+ weight of next item
w[k+1] is lesser than the capacity m , then we can select k+1 item also. Hence we call the function
again where sum so far is set to s+w[k], item to choose is k+1, and the residue weight so far is r - w[k]
. If no solution is being reached & the addition of (k+1)th item, for some k, causes the weights total to
exceed m, then we have to drop one of the previous item & hence for an alternate route to solving the
problem. Note before dropping say the kth item we first need to check that a solution is possible
without this item (i.e. sum without the kth item i.e. ‘s’+ sum of residues assuming kth item not taken
i.e. r - w[k] is 2m, means solution yet possible without kth item) and if with (k+1)t item [next just
heavier item... NOTE the list is already arranged in terms of weight] added to the current sum ‘s’
results is a sum <m, then we drop k't item (i.e. x[k]=0) and choose the (k+1)th item by calling the
function again with the parameters of old sum, k as k+1 and residue as r - w[k] (as kth item

unavailable). AR e o La 26
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GRAPH COLOURING
1 Algorithm mColoring(k)
2 // This algorithm was formed using the recursive backtracking
3 // schema. The graph is represented by its boolean adjacency
4 // matrix G[1 :n,1:n]. All assignments of 1,2,...,m to the
5 // vertices of the graph such that adjacent vertices are
6 // assigned distinct integers are printed. k is the index
7 // of the next vertex to color.
8
9 repeat
10 {// Generate all legal assignments for z[k].
11 NextValue(k); // Assign to z[k] a legal color.
12 if (z[k] = 0) then return; // No new color possible
13 if (k =.n) then // At most m colors have been
14 // used to color the n vertices.
15 write (z[1 : n]);
16 else mColoring(k + 1);
17 } until (false); '
18}

A%m 7.7 Finding all m-colorings bf a graph

The objective is to colour all ‘'n” node with ‘m’ colours with no two adjacent nodes having the same
colour. The function NextValue checks for node k if we can find a valid colour. x is an array & it
represents the node colour. If x[k] is zero means no valid colour could be found. If k reaches n then all

nodes are over. If neither of these 2 is possible then we need to proceed to the next node.

25

Al s low Lol s®
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1  Algorithm NextValue(k)

2 // z[l],...,z[k — 1] have been assigned integer values in

3 // the range [1,m] such that adjacent vertices have distinct
4 // integers. A value for z[k] is determined in the range

5 // [0,m]. z[k] is assigned the next highest numbered color
6 // while maintaining distinctness from the adjacent vertices
7 ]/ of vertex k. If no such color exists, then z[k] is 0.

8

9 repeat

0 {

/i z|k] := (z[k] + 1) mod (m -I- 1); // Next highest color.
12 if (z[k] = 0) then return; // All colors have been used.
13 for j:=1tondo

14 { // Check if this color is

15 // distinct from adjacent colors.

16 if ((G[k,j] # 0) and (z[k] = x[5]))

17 // If (k,7) is and edge and if ad].

18 // vertices have the same color.

19 then break; '

20

21 if (j =n+ 1) then return; // New color found
22 } until (false); // Otherwise try to find another color.
23}

Al}gﬁfhm 7.8 Generating a next color

1. Choose the next colour for node k.
2. If no colours left (i.e. x[k]=0) then return control back
3. Loop through all the columns of the adjacency matrix for row k
a. If edge found G[k,j]#0 & the adjacent node has same colour (i.e. x[k]=x[j]) then go back
tostep 1
4. Return control back

www.navlakhi.com / www.navlakhi.mobi Page |26 ISCGAY IcAhI ]
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Dynamic Programming

The general method
Multistage Graphs

All pair shortest path
Single source shortest path
Optimal BST

0/1 knapsack

TSP

Flow shop scheduling

DYNAMIC PROGRAMMING - MULTISTAGE GRAPH

Figure 5.2 Five-stage graph

Al s low Lol s®
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cost(3,6) = min {6+ cost(4,9),5 + cost(4, 10)}

— 1
cost(3,7) = min {4+ cost(4,9),3 + cost(4,10)}

= 5
cost(3,8) = 7
cost(2,2) = min {4+ cost(3,6),2 + cost(3,7),1 + cost(3,8)}

=
cost(2,3) = 9
cost(2,4) = 18
cost(2,5) = 15
cost(1,1) = min {9+ cost(2,2),7 + cost(2,3),3 + cost(2,4),

2 + cost(2,5)}
= 16
RAleanylowlolas®
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The complexity analysis of the function FGraph is fairly straightforward.
1f G is represented by its adjacency lists, then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G has
|E'| edges, then the time for the for loop of line 7 is ©(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is O(|V| + |E|). In
addition to the space needed for the input, space is needed for cost| |, d[ |,

and p| ].
Algorithm FGraph(G, k,n,p)

1 .
2 // The input is a k-stage graph G = (V, E) with n vertices
3 // indexed in order of stages. E is a set of edges and c[t, j|
4 // is the cost of (i, 7). p[1 : k] is a minimum-cost path.

5

6 cost[n] := 0.0;

7 for j:=n—-1to 1 step —1do

8 { // Compute cost[j].

9 Let r be a vertex such that (j,7) is an edge

10 of G and c[j,r] + cost[r] is minimum;

11 cost[j| := ¢[j,r] + cost[r];

12 dlgl =3

13 _

14 // Find a minimum-cost path.

15 pl1] == 1; plk] := n;

16 for j:=2 to k — 1 do p[j] :=d[p[j — 1]];

17 }

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

Al s low Lol s®
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{

C WO U Wk =

15 }

Algorithm BGraph(G, k,n, p)
// Same function as FGraph

beost[1] := 0.0;

for j:=2tondo

{ // Compute bcost|j].
Let r be such that (r, j) is an edge of
G and beost[r] 4 c[r, j] is minimum;
beost (] = beost[r] + ¢[r, j];
dlj] :=r;

// Find a minimum-cost path.

p1] := 1; plk] := n; , .
for j:= k—1 to 2 do p[j] := d[p[j + 1]];

Algorithm 5.2 Multistage graph pseudocode corresponding to backward

approach
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DYNAMIC PROGRAMMING - ALL PAIRS SHORTEST PATH

Algorithm AllPaths(cost, A,n) _ .
/] cost{l :m,1: n] is the cost adjacency matrix of a graph with
// n vertices; Ali,j] is the cost of a shortest path from vertex
// i to vertex j. costli,i] = 0.0, for 1 <i<n.
¢ for i := 1 to n do
for j:=1to ndo .
Ali, 7] := costli, j]; // Copy cost nto A.
for k:=1tondo
for i := 1 to n do
for j:=1to ndo .
AJi, 5] = min(A[i, 4], Ali, k| + Alk, 3]);
}

If for some k, the cost of i to j is costlier than i to k and k to j, then we update the cost of i to j to cost of
i,k + cost of k,j. Thus we need a tripple for loop & the efficiency is O(n3).

Alomurlonlrlas®
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DYNAMIC PROGRAMMING

Algorithm BellmanFord(v, cost, dist,n)
// Single-source/all-destinations shortest
// paths with negative edge costs

for i := 1 to n do // Initialize dist.
dist[i] := cost[v, i];
for k:=2ton—-1do
for each u such that u # v and u has
at least one incoming edge do
for each (i,u) in the graph do
if dist[u] > dist[i] + cost[i,u] then
dist|u| := dist[i] + cost|[i, u];

Here we have to find the shortest path of all nodes from v. Again we start by initializing the distance
of all nodes from v in array dist (if there is no link then too it will be initialized to ). For every node
u & its adjacent node i incident on u, we see if distance of u (from v) is more than the distance of i
from v + cost of link i,v then we update the distance of u to distance of i + cost of link i,v.

Since there are 3 nested for loop each a function of n, hence the efficiency is O(n3).
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DYNAMIC PROGRAMMING - TSP

The objective of the travelling salesperson problem is to start from a node, travel through all the
nodes only once & reach back to the start node.

iExample 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

0 10 15 20|
5 0 9 u}l
6 13 0 12

8 8 9 0

(a)

(b)

Wigure 5.21 Directed graph and edge length matrix ¢

Thus ¢g(2,¢) = ca1 = 5,9(3,¢) = e31 = 6, and g(4,¢) = ca1 = 8. Using
(5.21), we obtain .

9(2,{3}) = c3+9(3,0) = 15 g(2,{4}) = 18
o2} = 18 g3 {a]) = 20
94,{2}) = 13 9(4,{3})) = 15
Next, we compute g(i,S) with [S| =2,i#1,1¢ Sandi g S
 9(2,{3,4)) = min {e3 +9(3,{4}),c2e +9(4,{3})} = 25
9(3,{2,4}) = min {c32 +9g(2,{4}),c3a +9(4,{2})} = 25
9(4,{2,3}) = min {cg2 +9(2,{3}),ca3 +9(3,{2})} = 23

Finally, from (5.20) we obtain

g(l, {2! 3, 4}) = min {Cl'z + 9(2: {3: 4})1 a3 + 9(3, {2: 4})1 ci4 + 9(41 {21 3})}
= min {35, 40, 43}
= 35

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(¢,S) the value of
j that minimizes the right-hand side of (5.21). Let .J(i,S) be this value.
Then, J(1, {2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from g(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2,4). The remaining tour is for g(4, {3}) So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. o

~a = = - o - o marnd
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OBST
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0/1 KNAPSACK

Let me start with an example
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FLOWSHOP SCHEDULING

5.10 FLOW SHOP SCHEDULING

Often the processing of a job requires the performance of several distinct
tasks. Computer programs run in a multiprogramming environment are in-
put and then executed. Following the execution, the job is queued for output
and the output eventually printed. In a general flow shop we may have n
‘jobs each requiring m tasks T1i,T2iy. .., Tmi, 1 < % < n, to be performed.
Task T}; is to be performed on processor Pj, 1 < j < m . The time required
to complete task Tj; is tj;. A schedule for the n jobs is an assignment of tasks
to time intervals on the processors. Task T}; must be assigned to processor
P;. No processor may have more than one task assigned to it in any time

" interval. Additionally, for any job ¢ the processing of task T};, j > 1, cannot
be started until task 7;_; ; has been completed.

Example 5.27 Two jobs have to be scheduled on three processors. The
task times are given by the matrix J

2 0
J = |33
5 2

Two possiblé schedules for the jobs are shown in Figure 5.22. - O

A nonpreemptive schedule is a schedule in which the processing of a task
on any processor is not terminated until the task is complete. A schedule
for which this need not be true is called preemptive. The schedule of Fig-
ure 5.22(a) is a preemptive schedule. Figure 5.22(b) shows a nonpreemptive
schedule. The finish time f;(S) of job ¢ is the time at which all tasks of job
i have been completed in schedule S. In Figure 5.22(a), fi(S) = 10 and
f2(S) = 12. In Figure 5.22(b), fi1(S) = 11 and f3(S) = 5. The finish time
F(S) of a schedule § is given by

36
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= = = — v e we msrmarTama v A

time 0 2 3 5 6

11

- (b

"3

L

' (3
Figure 5.22 Two possible schedules for Example 5.27

F(S) = max {f:(S)}

1<i<n
The mean flow time MFT(S) is defined to be
1
MFT(S) =~ 3} fi(S)
N 1<ign

An optimal finish time (OFT) schedule for a given
(POMFT) schedule are defined in the obvious way.

OFT schedules for the case m = 2. In this section we
case.

(5.22)

(5.23)

set of jobs is a non-

preemptive schedule S for which F(S) is minimum over all nonpreemptive
schedules S. A preemptive optimal finish time (POFT) schedule, optimal
mean finish time schedule (OMFT), and preemptive optimal mean finish

Although the general problem of obtaining OFT and POFT schedules
for m > 2 and of obtaining OMFT schedules is computationally difficult (see
Chapter 11), dynamic programming leads to an efficient algorithm to obtain

consider this special

Al s low Lol s®
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Hence, it suffices to generate any schedule for which (5.29) holds for every
pair of adjacent jobs. We can obtain a schedule with this property by making
the following observations from (5.29). If min{a,as,...,an,b1,b2,...,b,}
is a;, then job i should be the first job in an optimal schedule. If min{a,, as,
ceuy Qpybyybay ... by} is by, then job j should be the last job in an optimal
schedule. This enables us to make a decision as to the positioning of one
of the n jobs. Equation 5.29 can now be used on the remaining n — 1 jobs
to correctly position another job, and so on. The scheduling rule resulting
from (5.29) is therefore:

1. Sort all the a;’s and b;’s into nondecreasing order.

2. Consider this sequence in this order. If the next number in the sequence
is a; and job j hasn’t yet been scheduled, schedule job j at the leftmost
available spot. If the next number is b; and job j hasn’t yet been
scheduled, schedule job j at the rightmost available spot. If j has
already been scheduled, go to the next number in the sequence.

Note that the above rule also correctly positions jobs with a; = 0. Hence,
these jobs need not be considered separately.

JFxample 5.28 Let n = 4, (a1, as,as,as4) = (3, 4, 8, 10), and (b1, ba, b3, bsg) =

6, 2, 9, 15). The sorted sequence of a’s and b’s is (b2, a1, 62, b1, a3, b3, a4, bs)
= (2, 3, 4, 6, 8, 9, 10, 15). Let 01,02,03, and o4 be thé optimal’schedule.
Since the smallest number is by, we set 04 = 2. The next number is a; and
we set 07 = a;. The next smallest number is ap. Job 2 has already been
scheduled. The next number is b;. Job 1 has already been scheduled. The
next is a3 and we set o3. This leaves o3 free and job 4 unscheduled. Thus,
gy =4, _ O

The scheduling rule above can be implemented to run in time O(nlogn)
(see exercises). Solving (5.24) and (5.25) directly for g(1,2,...,n,0) for the
optimal schedule will take Q(2") time as there are these many different S’s
for which ¢(S,t) will be computed.
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Branch & Bound

The General method
15 puzzle: An example
Travelling salesman problem

BRANCH BOUND - LC SEARCH - LEAST COST SEARCH

Terminology
Definition 1
Live node is a node that has been generated but whose children have not yet been generated.
Definition 2
E-node is a live node whose children are currently being explored. In other words, an E-node is a
node currently being expanded.
Definition 3
Dead node is a generated node that is not to be expanded or explored any further. All children of a
dead node have already been expanded.
Definition 4
Branch-and-bound refers to all state space search methods in which all children of an E-node are
generated before any other live node can become the E-node.
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listnode = record {
listnode x nexrt, * parent; float cost;

Algorithm LCSearch(t)
// Search t for an answer node.

if %t is an answer node th
_ en output xt :
E :=t; // E-node. g Pt e

Initialize the list of live nodes
. repeat

{

to be empty;

?)r each child z of E do

if z is an answer node the
n output th
from z to ¢ and return; P e

Add(z); // z is a new live node.

) (z — parent) := E; // Pointer for f)ath to root.

if there are no more live nodes then

{

write ("No answer node"); return;

E := Least();
} until (false);

Let t be the E-node to be expanded. Expanding the E-node results in number of live nodes. For each
such child check if it is the answer. If so then stop & output the solution. If not then store it for further
reference. If any live nodes left to be expanded, then choose the least one (LC based technique) &
make it the E-node & repeat the cycle. If no more live nodes left & we haven't yet reached a solution
then return NO ANSWER NODE POSSIBLE.

NOTE: The choice of the next E-Node if it is based on some minimum cost then its LC (Least Cost)
method. If choices are put in a queue & then the selection is made then it is called FIFO method & if a
stack is used instead of a queue then its called LIFO method. (Least is the pop/dequeue function)
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15 PUZZLE

~ 15 numbered tiles on a square frame with a capacity for 16 tiles
- Given an initial arrangement, transform it to the goal arrangement through a series of legal moves

1]13]4]15 1 27314
2 5] 12 S1e T8
716(11] 14 S|z
8191013 13| 14 | 15

Initial Arrangement  Goal Arrangement

- Legal move involves moving a tile adjacent to the empty spot Eto E
— Four possible moves in the initial state above: tiles 2, 3,5, 6
— Each move creates a new arrangement of tiles, called state of the puzzle
- Initial and goal states
— Astate is reachable from the initial state iff there is a sequence of legal moves from initial state to this state
— The state space of an initial state is all the states that can be reached from initial state
— Search the state space for the goal state and use the path from initial state to goal state as the answer
- Number of possible arrangments for tiles: 16! ~ 20.9 x 1012

= Only about half of them are reachable from any given initial state
— Check whether the goal state is reachable from initial state

= Number the frame positions from 1to 16

= p; is the frame position containing tile numbered ¢

* Py is the position of empty spot

= For any state, let [; be the number of tiles j such that j < ¢ and p; > p;

= For the initial arrangement above, } = 0,14 =1,and 12 =6
Let = 1 if in the initial state, the empty spot is in one of the following positions: 2.4, 5.7,10, 12, 13, 15;
otherwise z =0
Theorem 1 The goal state is reachable from the initial state iff Zf: Ui +2 is even,

*

NOTE:

I1=number of number after 1 which are less than 1 & after 1 i.e. 0 in this case

12= number of number after 2 which are less than 2 & after 2 i.e. 0 in this case (take blank as 16)

13= number of number after 3 which are less than 3 & after 3 i.e. 1 in this case (take blank as 16)

14= number of number after 4 which are less than 4 & after 4 i.e. 1 in this case (take blank as 16)

15= number of number after 5 which are less than 5 & after 5 i.e. 0 in this case (take blank as 16)

16= number of number after 6 which are less than 6 & after 6 i.e. 0 in this case (take blank as 16)

17= number of number after 7 which are less than 7 & after 7 i.e. 1 in this case (take blank as 16)

18= number of number after 8 which are less than 8 & after 8 i.e. 0 in this case (take blank as 16)

19= number of number after 9 which are less than 9 & after 9 i.e. 0 in this case (take blank as 16)
110= number of number after 10 which are less than 10 & after 10 i.e. 0 in this case (take blank as 16)
111= number of number after 11 which are less than 11 & after 11 i.e. 3 in this case (take blank as 16)
112= number of number after 12 which are less than 12 & after 12 i.e. 6 in this case (take blank as 16)
& soon till 116

Now since blank is in slot 6 of the board, we take x=0
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If sum of all I's above & x is odd, then solution not possible from this position.

If it was even then we now test for (utmost) 4 possibilities out of this board & find the )1 + x for each
& if any is odd then that part of the tree will not be expanded further (bounded).

[SEE EXAMPLE SOLVED IN CLASS]

NOTE:
The above in LIFO would mean that we need to stack the (utmost) 4 option we get from the current

board & then pop one & work on it & then push in the other options resulting from it, & so on

(obviously bounding the branches where Tinli+2 odd).
Using a queue instead of a stack will result in the FIFO method.

For LC Search method we need to device a cost function which can be calculated at each stage & the
choice of the next E-Node can be made based on the cheapest cost. Such a cost function can be called
c(x) which is the length of path from the root node to a nearest goal node (if any) in the sub tree
rooted at x.

1
11213 |4
516 8
9 110]17 | 11
13|14} 15|12
//,“P/// left
right own
2 : 3 4 3
1]2] |a] 1|23 [s 1[2]3]s tlafs]a]
516|318 s 6|8 T [sls|7]s 5| les
9 110]17 |11 91047 [N 9 |10 11 9 110]7 |1t
13] 14| 15| 12 13 14% 15} 12 13] 14} 15} 12 13] 14| 15[ 12
righ left up down righ left u left
§ o0 3 N 9 1 i cqwn g 1 4 dqwn g
1112 14 1 214 11213 11213 |4 1123 |4 112 (3|4 1 3|4 1 304 l§234 1{2]3 |4
516 3|8 ENLEENL] 51618 |4 S 6 (8|11 |5i6(7|8 5167 |8 5(6 (718 512 |6|8 5[10/6 |8 5|68
10]7 |11 9| 10]7 |11 9 |10§7 |1t 9 1 10;7 9 | 10f11 9 (10§ 15] 11 9 10 11 2|07 _? 7|11 9 110]7 |11
13| 14| 15] 12 13| 14| 15] 12 13] 14| 15{ 12 13} 14| 15 12 ,.!_}J_“' 15(12 13: 14 12 13] 14] 15| 12 13| 14/ 15)12| - | 13| 14| 15|12 13] 14] 15| 12
16_dawn 1 left 27 UP >ydown
1[2]a]8 L[2] 5] L 2fafe] [1]2]3]s
6|3 5|6 (8 43 Sy 516 (7 5(617 (8
9 [10[7 |11 wn left (9197 (1t down 1 9 |10{11]8 9 {10j 1)1z
13| 14 15|12 13] 14| 15 12 i 13] 14| 15] 12 13| 14] 15
: goal
17 1 2 2
I 1612 |4 1124 11213 ][4 112(3 |4
5 3|8 516 (3|8 516 |B |11 6 18 |11
9 110]7 |11 9 (107 |11 ) 91107 |12 10 7
13114} 15] 12 13]14] 15] 12] 13| 14| 15 13{ 14] 15] 12
Edges are labeled according to the direction
in which the empty space moves
Aleurlonllolas®
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Thus, c(1)=c(4)=c(10)=c(23)=3. If we had the costs then a very efficient search can be made from the
root node to the goal state along the path where c(x) is same. Hence the only E-nodes are the nodes
along the path from the root to the goal state. Unfortunately, this is an impractical strategy as we
cannot find c(x) looking at a node x &/ or its predecessors only.

Thus we try to
Compute an estimate é(z) of ¢(z)

é(z) = f(z) + g(x) where f(z) is the length of the path from root to z and g(z) is an estimate of the length
of a shortest path from z to a goal node in the subtree with root
One possible choice for g(z) is the number of nonblank tiles not in their goal position
There are at least §(z) moves to transform state  to a goal state
+ é(z) is a lower bound on ¢(z)

At each stage among all the live - nodes we choose that E-Node which has the least approximation
¢(%) & then make it the E-Node & generate its live nodes, & then from the pool of all live nodes we

choose the next least approximation & so on. LC, with a good choice of &(), leads to a quicker
solution than FIFO & LIFO.

[TRY TO RE-DO THE CLASSWORK SUM USING LC METHOD]
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TRAVELLING SALESMAN PROBLEM

8.3 TRAVELING SALESPERSON ()

An O(n?2") dynamic programming algorithm for the traveling salesperson
problem was arrived at in Section 5.9. We now investigate branch-and-
bound algorithms for this problem. Although the worst-case complexity
of these algorithms will not be any better than O(n?2"), the use of good
bounding functions will enable these branch-and-bound algorithms to solve
some problem instances in much less time than required by the dynamic
programming algorithm.

Let G = (V, E) be a directed graph defining an instance of the traveling
salesperson problem. Let c¢;; equal the cost of edge (2, j), ¢;; = 00 if (i, 5) & E,
and let |V| = n. Without loss of generality, we can assume that every tour
starts and ends at vertex 1. So, the solution space S is given by S = {1, 1|r
is a permutation of (2,3,...,n)}. Then |S| = (n — 1)!. The size of S can be
reduced by restricting S so that (1,41,42,...,ip—1,1) € S iff (ij,i41) € E,
0<j<n-1,and i =i, = 1. S can be organized into a state space tree
similar to that for the n-queens problem (see Figure 7.2). Figure 8.10 shows
the tree organization for the case of a complete graph with |V| = 4. Each
leaf node L is a solution node and represents the tour defined by the path
from the root to L. Node 14 represents the tour ig = 1,4; = 3,ip = 4,13 = 2,
and i = L.

To use LCBB to search the traveling salesperson state space tree, we

- need to define a cost function c(-) and two other functions é(-) and u(-) such
that &(r) < ¢(r) < u(r) for all nodes r. The cost ¢(-) is such that the solution
node with least ¢(-) corresponds to a shortest tour in G. One choice for ¢(-) is

(Al = length of tour defined by the path from the root to A, if A is a leaf
A =1 cost of a minimum-cost leaf in the subtree A, if A is not a leaf

A simple ¢(-) such that ¢(A) < ¢(A) for all A is obtained by defining é(A)
to be the length of the path defined at node A. For example, the path defined
at node 6 of Figure 8.10 is 4p,%1,72 = 1,2,4. It consists of the edges (1,2)
and (2,4). A better é(-) can be obtained by using the reduced cost matrix
corresponding to G. A row (column) is said to be reduced iff it contains at
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8.3. TRAVELING SALESPERSON () 423

Figure 8.10 State space tree for the traveling salesperson problem with
n=4andig=1 =1

least one zero and all remaining entries are non-negative. A matrix is reduced
iff every row and column is reduced. As an example of how to reduce the
cost matrix of a given graph G, consider the matrix of Figure 8.11(a). This
corresponds to a graph with five vertices. Since every tour on this graph
includes exactly one edge (i, j) with ¢ = k, 1 < k < 5, and exactly one edge
(¢,4) with j = k, 1 < k < 5, subtracting a constant ¢ from every entry in
one column or one row of the cost matrix reduces the length of every tour
by exactly ¢. A minimum-cost tour remains a minimum-cost tour following
this subtraction operation. If ¢ is chosen to be the minimum entry in row i
(column j7), then subtracting it from all entries in row ¢ (column j) introduces
a zero into row i (column j). Repeating this as often as needed, the cost
matrix can be reduced. The total amount subtracted from the columns and
rows is a lower bound on the length of a minimum-cost tour and can be used
as the ¢ value for the root of the state space tree. Subtracting 10, 2, 2, 3, 4,
1, and 3 from rows 1, 2, 3, 4, and 5 and columns 1 and 3 respectively of the
matrix of Figure 8.11(a) yields the reduced matrix of Figure 8.11(b). The
total amount subtracted is 25. Hence, all tours in the original graph have a
length at least 25.

We can associate a reduced cost matrix with every node in the traveling
salesperson state space tree. Let A be the reduced cost matrix for node R.
Let S be a child of R such that the tree edge (R, S) corresponds to including
edge (7,7) in the tour. If S is not a leaf, then the reduced cost matrix for
S may be obtained as follows: (1) Change all entries in row i and column
Jj of A to oco. This prevents the use of any more edges leaving vertex i or
entering vertex j. (2) Set A(j,1) to co. This prevents the use of edge (j,1).
(3) Reduce all rows and columns in the resulting matrix except for rows and
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columns containing only oco. Let the resulting matrix be B. Steps (1) and
(2) are valid as no tour in the subtree s can contain edges of the type (i, k)
or (k,j) or (j,1) (except for edge (i,j)). If r is the total amount subtracted
in step (3) then &(8) = é(R) + A(i, ) + r. For leaf nodes, é(-) = ¢() is easily
computed as each leaf defines a unique tour. For the upper bound function
u, we can use u(R) = oo for all nodes R.

oo 20 30 10 11 ac 10 17 0 1
15 oc 16 4 2 12 oc 11 2 0
3 5 x 2 4 0 3 = 0 2
19 6 18 oo 3 15 3 12 o 0
16 4 7 16 oo ] 11 0 0 12 o
(a) Cost matrix (b) Reduced cost
matrix
=25

Figure 8.11 An example

Let us now trace the progress of the LCBB algorithm on the problem
instance of Figure 8.11(a). We use ¢ and u as above. The initial reduced
matrix is that of Figure 8.11(b) and upper = co. The portion of the state

space tree that gets generated is shown in Plgure 8.12. Starting with the

root node as the E-node, nodes 2, 3, 4, and 5 are generated [m that order).
The reduced matrices corresponding to thaﬁe nodes are shown in Figure 8.13.
The matrix of Figure 8.13(b) is obtained from that of 8.11(b) by (1) setting
all entries in row 1 and column 3 to oo, (2) setting the element at position
(3, 1) to oo, and (3) reducing column 1 by subtracting by 11. The é for node
3 is therefore 25 + 17 (the cost of edge (1,3) in the reduced matrix) + 11
= 53. The matrices and ¢ value for nodes 2, 4, and 5 are obtained similarly.
The value of upper is unchanged and node 4 becomes the next E-node. Its
children 6, 7, and 8 are generated. The live nodes at this time are nodes 2,
3, 5, 6,7, and 8. Node 6 has least ¢ value and becomes the next E-node.
Nodes 9 and 10 are generated. Node 10 is the next E-node. The solution
node, node 11, is generated. The tour length for this node is é(11) = 28 and
upper is updated to 28. For the next E-node, node 5, é(5) = 31 > upper.
Hence, LCBB terminates with 1, 4, 2, 5, 3, 1 as the shortest length tour.
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Numbers outside the node are ¢ values

Figure 8.12 State space tree generated by procedure LCBB

(d) Path 1,5; node 5 (e) Path 1,4,2; node 6 (f) Path 1,4,3; node 7

00 00 00 00 o0 o0 00 00 00 00 00 00 00 00 00
oo o0 11 2 0 1l oc ¢ 2 0 12 ¢ 11 oo 0
0 co c0o 0 2 0 3 o 0 2 0 3 o0 o0 2
15 c0 12 o0 O 4 3 ¢ o 0 oo 3 12 oo 0O
11 oo 0 12 0 0 c© 12 oo 11 0 0 oo o
(a) Path 1,2; node 2 (b) Path 1,3; node 3 (c) Path 14; node 4
00 00 00 0 o0 00 00 o0 oo 00
100 0 9 0 oo oo 11 oo 0 oo 00 o 0
0 3 o 0 o 0 ¢ ¢ o0 2 1 o0 c0o 0
12 0 9 o o 00 00 00 00 o0 0o 00 0
oo 0 0 12 o0 11 © 0 o0 ¢ 0 0 0o ®© ™®
00 00 00 00 00 0 0 0 00 o 0O 00 00 00 O

1 o0 0 o0 o0 o0 00 00 00 & 00 o0 60 00 00

0 3 ¢ 00 o© o 00 o0 o 0 0 oo 00 00 o
00 00 00 o0 0 00 00 00 0 00 00 00 00 00 o0
oo 0 0 o0 0 c0o 0 o0 ™ o o 0 o0 ¢

[
it
[

]
l
(g) Path 1,4,5; node 8 (h) Path 1,4,2,3; node 9 i) Path 1,4,2,5; node 10

Figurc 8.13 Reduced cost matrices corresponding to nodes in Figure 8.12
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DIVIDE & CONQUER

* General method

* Binary search

* Finding minimum and maximum

* Merge sort analysis

* Quick sort analysis

* Strassen’s matrix multiplication

* The problem of multiplying long integers
* - constructing Tennis tournament

BINARY SEARCH

Algorithm BinSrch(a,i,l, z)

// Given an array a[i : l] of elements in nondecreasing
// order, 1 < ¢ <, determine whether z is present, and
// if so, return j such that z = a[j]; else return 0.

if (I = i) then // If Small(P)

if (z = a[i]) then return i;
else return 0;

OO0 ~I U LoD

10 }

11 else

12 { // Reduce P into a smaller subproblem.

13 mid:= (i +1)/2];

14 if (z = a[mid]) then return mid;

15 else if (z < a[mid]) then

16 return BinSrch(a, i, mid — 1, z);
17 else return BinSrch(a, mid + 1,1, z);
18

19 }

Algorithm 3.3 Recursive binary search
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: o1 Algorithm BinSearch(a,n,z) .
92 // Given an array a[l : n] of elements in nondecreasing
i 3 // order, n > 0, determine whether x is present, and
i 4 /] if so, return j such that z = a[j]; else return 0.
{5 g

i 6 low := 13 high = n;

€ 7 while (low < high) do

;; 8 |

P9 mid := | (low + high)/2]; _

¢ 10 if (z < a[mid]) then high := mid — 1;

v 11 else if (z > a[mid]) then low := mid + 1;
g 12 else return mad;

¢ 13

P4 return 0;

%;Algorithm 3.4 Iterative binary search

&

@
O ]
1 £ 9] 12)
B ONORONOBUNCIC

- _
COO00000000000

'Figure 3.4 Binary decision tree for binary search, n = 14
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1  Algorithm BinSearchl(a,n,x)

2 // Same specifications as BinSearch except n > 0
3

4 low = 13 high =n+ 13

5 / high is one more than possible.

6 while (low < (high — 1)) do

7

8 mid = |(low + high)/2];

9 if (z < almid]) then high = mad;

10 // Only one comparison in the loop.
11 else low := mid; // x > almid]

12 .

13 if (z = a[low]) then return low; // x is present.
14 else return0; // x is not present.

15 }

Algorithm 3.5 Binary search using one comparison per cycle
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FINDING MIN MAX

The procedure is initially invoked by the statement
fi=

MaxMin'(l, ﬂ, z,Yy)

Suppose we simulate MaxMin on the following nine elements:

a (1] [2 (3] M (5] 6] [ [8 [9)
22 13 —5 -8 15 60 17 31 47

A good way of keeping track of recursive calls is to build a tree by adding a 4
node each time a new call is made. For this algorithm each node has four
¢ items of information: i, j, max, and min. On the array a| | above, the tree
of Figure 3.5 is produced. : 1
Examining Figure 3.5, we see that the root node contains 1 and 9 as the }
values of 7 and j corresponding to the initial call to MaxMin. This execution
produces two new calls to MaxMin, where 7 and j have the values 1, 5 and :
6, 9, respectively, and thus split the set into two subsets of approximately
the same size. From the tree we can immediately see that the maximum
« depth of recursion is four (including the first call). The circled numbers in
. the upper left corner of each node represent the orders in which maz and
. min are assigned values. .
Now what is the number of element comparisons needed for MaxMin? If
. T(n) represents this number, then the resulting recurrence relation is

{ th”((n/ﬂ) +T([n/2])+2 n>2

n=2
0 n=1

T(n)=

* When n is a power of two, n = 2k for some positive integer k, then

_ Al rloollolas
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1 Algorithm MaxMin(i, j, max, min)

2 // all:n]is a global array. Parameters ¢ and j are integers,
3 //1<i<j<n. The effect is to set maz and min to the
4 // largest and smallest values in afi : j], respectively.

5)

6 if (z = j) then maz := min := ali]; // Small(P)

7 _else if (i=j—1) then // Another case of Small(P)
8

9 f (ai] < a[j]) then

10

11 mazx = alj]; min := ali];

12 }

13 else

14 {

15 mazx := ali]; min = aljl;

16 } |

17 }

18 else

19 { // If P is not small, divide P into subproblems.
20 // Find where to split the set.

21 mid = (i + 7)/2];

22 // Solve the subproblems.

23 MaxMin(z, mid, maz, min);

24 MaxMin(mid + 1, j, mazl ,minl);

25 // Combine the solutions.

26 if (maz < maxl) then mazx := mazl;

27 if (min > minl) then min := minl;

28 } |

29 }

Algorithm 3.7 Recursively finding the maximum and minimum
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T(n) = 2T(n/2) + 2 |
= 22T (n/4)+2)+2* 47 7~
= 4T(n/4) +4+2
LTS S S g
— k—1: i
= 27 T2+ Xicick-12"
= 2Fl ok 0 =3p/2 v
®_
1,9,60,-8\
® — T 6
11,5,22,-8 6.9,60,17
®_£"//j/ ™~ @ @ 1-‘_/_/ ,\;g
13,22,-5| 45,158 [6,7,60,17 894731
122213 13,3,-5,-5|
Figure 3.5 Trees of recursive calls of MaxMin
Note that 3n/2 — 2 is the best-, average-, and worst-case number of com-

parisons when n is a power of two.
Compared with the 2n — 2 comparisons for the straightforward method,
this is a saving of 25% in comparisons. It can be shown that no algorithm

based on comparisons uses less than 3n/2 — 2 comparisons. So in this sense
algorithm MaxMin is optimal (see Chapter 10 for more details). But does
this imply that MaxMin is better in practice? Not necessarily. In terms
of storage, MaxMin is worse than the straightforward algorithm because it
requires stack space for i, j, max, min,maxl, and minl. Given n elements,
there will be |logs n] + 1 levels of recursion and we need to save seven values
for each recursive call (don’t forget the return address is also needed).
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