
Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 1

1

A Concise Book on Analysis of Algorithms

(ver. 2017v2)

By

Abhishek Navlakhi
This is a private release for students of Navlakhi’s. More educational material can be found at

navlakhi.com and navlakhi.mobi

Tel: 9820246760 / 9769479368 / 9820009639
Email: abhishek@navlakhi.com

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 2

2String Matching Algorithms
• The naïve string matching Algorithms
• The Rabin Karp algorithm
• String matching with finite automata
• The knuth-Morris-Pratt algorithm
• Longest common subsequence algorithm

PATTERN MATCHING ALGORITHM

We are given a text string T of length n & a pattern string P of length m, and we want to find whether
P is a substring of T.

 Brute Force

The outer loop runs for all the characters of text and the inner loop runs through the pattern
array incrementing by 1 each time a match is obtained.

Performance
The outer for loop is executed at most n − m+ 1 times, and the inner loop is executed at most m
times. Thus, the running time of the brute-force method is O((n − m+ 1)m), which is simplified

as O(nm). Note that when m = n/2, this algorithm has quadratic running time O(n2).

Example

T = "abacaabaccabacabaabb"

and the pattern string

P= "abacab".

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 3

3

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 4

4

The Rabin-Karp algorithm has the complexity of O(nm) where n, of course, is the length of the text,
while m is the length of the pattern

3 Reasons Why Rabin-Karp is Cool

1. Good for plagiarism, because it can deal with multiple pattern matching!
2. Not faster than brute force matching in theory, but in practice its complexity is O(n+m)!
3. With a good hashing function it can be quite effective and it’s easy to implement!

2 Reasons Why Rabin-Karp is Not Cool

1. There are lots of string matching algorithms that are faster than O(n+m)
2. It’s practically as slow as brute force matching and it requires additional space

 Knuth – Morris – Pratt (KMP) Algorithm

The failure function f(j) is defined as the length of the longest prefix of P that is a suffix of P[1..j]

Consider the pattern string P = "abacab". The Knuth-Morris-Pratt (KMP) failure function f(j) for the
string P is as shown in the following table:

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 5

5

The KMP pattern matching algorithm, shown above, incrementally processes the text string T
comparing it to the pattern string P. Each time there is a match, we increment the current indices. On the
other hand, if there is a mismatch and we have previously made progress in P, then we consult the
failure function to determine the new index in P where we need to continue checking P against T.
Otherwise (there was a mismatch and we are at the beginning of P), we simply increment the index for T
(and keep the index variable for P at its beginning). We repeat this process until we find a match of P in
T or the index for T reaches n, the length of T (indicating that we did not find the pattern PinT).

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 6

6

Performance

For the sake of the analysis, let us define k = i − j. Intuitively, k is the total amount by which the pattern
P has been shifted with respect to the text T. Note that throughout the execution of the algorithm, we
have k ≤ n. One of the following three cases occurs at each iteration of the loop.

• If T[i] = P[j], then i increases by 1, and k does not change, since j also increases by 1.

• If T[i] ≠ P[j] and j > 0, then i does not change and k increases by at least 1, since in this case k
changes from i − j to i − f(j − 1), which is an addition of j − f(j − 1), which is positive because f(j − 1)
< j.

• If T[i] ≠ P[j] and j = 0, then i increases by 1 and k increases by 1, since j does not change.

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly both); hence, the total
number of iterations of the while loop in the KMP pattern matching algorithm is at most 2n.

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous to that of algorithm
KMPMatch. Thus, we have:

The Knuth-Morris-Pratt algorithm performs pattern matching on a text string of length n and a
pattern string of length m in O(n + m) time.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 7

7TEXT SIMILARITY TESTING

A common text processing problem, which arises in genetics and software engineering, is to test
the similarity between two text strings. In a genetics application, the two strings could correspond to
two strands of DNA, which could, for example, come from two individuals, who we will consider
genetically related if they have a long subsequence common to their respective DNA sequences.

The specific text similarity problem we address here is the longest common subsequence (LCS)
problem. In this problem, we are given two character strings,

X = X0X1X2 …Xn−1 and Y = Y0Y1Y2 … Ym−1,
over some alphabet (such as the alphabet {A,C, G, T} common in computational genetics) and are asked
to find a longest string S that is a subsequence of both X and Y.

Longest Common Subsequence Problem

 Brute Force
One way to solve the longest common subsequence problem is to enumerate all subsequences
of X and take the largest one that is also a subsequence of Y. Since each character of X is either
in or not in a subsequence, there are potentially 2n different subsequences of X, each of which
requires O(m) time to determine whether it is a subsequence of Y. Thus, this brute-force
approach yields an exponential-time algorithm that runs in O(2nm) time, which is very
inefficient.

 Dynamics Programming

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 8

8If X[i] = Y [j] then

If X[i] ≠ Y[j] then

Performance: Given a string X of n characters and a string Y of m characters, we can find the longest
common subsequence of X and Y in O(nm) time.

Justification: Algorithm LCS computes L[n − 1,m − 1], the length of a longest common subsequence,
in O(nm) time. Given the table of L[i, j] values, constructing a longest common subsequence is
straightforward. One method is to start from L[n, m] and work back through the table, reconstructing
a longest common subsequence from back to front. At any position L[i, j], we can determine whether
X[i] = Y[j] . If this is true, then we can take X[i] as the next character of the subsequence (noting that
X[i] is before the previous character we found, if any), moving next to L[i − 1, j − 1]. If X[i] ≠ Y[j] , then
we can move to the larger of L[i, j − 1] and L[i −1,j]. We stop when we reach a boundary cell (with i =
− 1 or j = −1). This method constructs a longest common subsequence in O(n + m) additional time.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 9

9Greedy Method
• General Method
• Knapsack problem
• Job sequencing with deadlines
• Minimum cost spanning trees-Kruskal and prim’s algorithm
• Optimal storage on tapes
• Single source shortest path

GENERAL METHOD

The greedy algorithm works in stages, considering one input at a time. At each stage, a decision is
made regarding whether a particular input is in an optimal solution. If the inclusion of the next input
into the partially constructed optimal solution will result in an infeasible solution, then this into is not
added to the partial solution. Otherwise, it is added.

e.g. consider that Rs.33 are to be paid by a customer to a shopkeep & he hands over a Rs.100. Hence
the shopkeeper needs to return back Rs.67. In the greedy approach we are trying to minimize the
number of currency notes (or coins) given. Note the full amount Rs.67 has to be paid back, then only
it’s a feasible solution. But naturally the shopkeeper returns Rs.67 by first paying back Rs.50, then
Rs.10, then Rs.5 & then two Rs.2 coins. Greedy approach is often a very natural approach to solving a
problem.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 10

10KNAPSACK PROBLEM

There are n objects and a knapsack (or bag) available. Each object has an associated weight(wi) &
profit(pi). Each knapsack has a maximum capacity it can carry. Whatever algorithm we may use we
have to try to

The profits and weights are positive numbers.

Consider the following problem n=3, m=20, (p1,p2,p3)=(25,24,15), and (w1,w2,w3)=(18,15,10). The
problem can be solved in 4 ways, all feasible but only one is optimal

Option 1: Ordered by profit

p1=25 w1=18
p2=24 w2=15
p3=15 w3=10

We select item 1 first, as its expected to grow the profit the maximum. Thus the knapsack capacity
was 20, but now after inserting item1 its 20 – 18 =2. These 2 units will be taken from item2 resulting in
a profit of 2/15*24 = 3.2. Thus the total profit is 25+3.2 = 28.2

Option 2: Ordered by descending on weight

In order to accommodate most items we can choose by decrasing weights

w3=10 p3=15
w2=15 p2=24
w1=18 p1=25

We select item 3 first, the knapsack capacity is 20 & after adding item3 its 20 – 10=10. Now adding
item2 the profit is totally 15 + (10/15) 24 = 31. The answer turned out to be more than option1, hence
option1 wasn’t optimal.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 11

11Option 3: Ordering by profit by weigth ratio

p2/w2=1.6 w2=15 p2=24
p3/w3=1.5 w3=10 p3=15
p1/w1=1.39 w1=18 p1=25

We choose item2 in our knapsack. The knapsack capacity from 20 is now reduced to 20 – 15 = 5. Now
we choose item3. The total profit is 24 + 5*1.5 = 31.5. Hence Option 2 was feasible but not optimal.

Irrespective of the ordering (assuming that the elements are ordered in the option of choice), greedy
algoritm can be implemented as follows:

KRUSKAL’S ALGORITHM

The objective is to construct a minimum cost tress from a given graph. The graph is entered in a form
of a n X n matrix with the weights entered for corresponding row & column representing the
corresponding nodes of the graph. Consider the following graph

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 12

12We start choosing the cheapest edge first i.e. 1 – 6. Then the next cheapest & so on… At each step no
loops should be formed. If a loop is being formed at any step, we discard that selection & look for the
next cheapest edge. This technique is demonstrated below

The final answer being

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 13

13The basic algorithm being

A more detailed implementation can consider making a min heap for selecting the minimum & then
to reheapify it for getting the next minimum & so on. The algorithm is shown below:

Find(u) and Find(v) check to see it the two already exists & helps in deciding to know if inserting the
new edge would create any loop. j and k represent the sets to which the vertices u & v belong. If the
sets are the same (i.e. j=k) then the current edge will result in a loop, hence discarded. But, if j≠k,
implies that u & v belong to different sets, hence the current edge can be inserted into the forest. Our
final objective is to generate a tree if minimum cost, but the intermediate stages may not be a tree.

Performance

Maintaining the structure as a heap allows us to find the next edge in O(log |E|) time. The heap
construction will take O(|E|) time. Hence the worst case time is O(|E|log|E|)

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 14

14PRIM’S ALGORITHM

This is another method for creating a MST (minimum spanning tree). Here we start off with the least
cost edge and then we proceed from any visited node (i.e. node in the tree) to any unvisited node (not
in the tree) which has the next cheapest cost. Since we are going from an existing to a new node, there
are no chances of loop formation, hence the need to detect loops no longer exists in Prim’s algorithm.

Considering the same example we show how to solve a problem involving Prim’s algorihm

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 15

15

As can be seen we start from the edge with minimum cost (k,l). Array t is a 2 column array with column
1 representing the source & column 2 the destination. Thus the source of the 1st edge of the tree t[1,1]=k
and the destination of this 1st edge is t[1,2]. Each vertex – vertex pair has a cost associated with it (finite
positive if the edge exists & +∞ if the edge does not exists between the pair of vertices). Once the first
edge is selected the neighbor of each vertex is set to either k or l depending on who is more cheaper (in
terms of cost). [Note Prims algorithm chooses edges from visited to non-visited node, hence each
unvisited node neighbor has to be one of the visited nodes]. For the remaining n -2 edges (to connect n
nodes we need n – 1 edges) we repeat a similar procedure of finding minimum cost between some j &
near[j] (note near[j] will always be visited node) for near[j]≠0 (all unvisited nodes have near[j] as non-
zero, hence j is the unvisited node). We choose the j, update the array t to add another edge & update

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 16

16near[j] to 0 & also update the near array for all unvisited vertices if they are nearer to this newly chosen
node instead of the previously chosen node (Note near[unvisited]=closest visited node).

Performance

Prims, in the above form, take time O(n2). The for loop of i going from 2 to n – 1 internally has 2
independent (not nested) loops first of time O(n) & the other time O(|E|) (one to find j index & the
other to update ‘near’). This the total time take is O(n2).

If the unvisited (non – tree) nodes are stored in a more efficient structure like a red – black tree then the
searching time is O(log n) & the updating of near has to examine only nodes adjacent to j hence the
time there is O(|E|) and O(log n) for updating. Hence the total time is O((n+|E|) log n).

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 17

17SINGLE SOURCE SHORTEST PATH (Dijkstra)

We are given a directed graph G=(V,E), a weighting function cost of edges of G, and a source vertex
vo. The problem is to determine the shortest paths from vo to all the remaining vertices of G. It is
assumed that all the weights are positive.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 18

18Performance

Time taken by the algorithm on a graph with n vertices is O(n2). The second for loop is executed n – 2
times & each execution requires O(n) time to find the minimum distance & update the distances. Thus
the asymptotic time would be O(n2).

If a more efficient storage structure like a adjacency list is used then the update of distance would
take O(|E|) time, since dist can change only for the vertices adjacent from u. If V – S is maintained in
a red – black tree, then, finding the minimum would take O(log n) time. But this has to be done
approx. n times, thus O(n log n). Updating an edge would also take O(log n) time & since there are
|E| edges to update, the time for update is O(|E|log n). Thus the total time would be
O(n log n + |E| log n) = O((n + |E|)log n)

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 19

19JOB SCHEDULING WITH DEADLINES

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 20

20

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 21

21OPTIMAL STORAGE ON TAPES

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 22

22Backtracking
 The general method
 8 queens problem
 Sum of subsets
 Graph colouring

N-QUEENS PROBLEM

The objective is to place N Queens on a N X N chessboard so that no queen kills any other queen.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 23

23

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 24

24BACKTRACKING – SUM OF SUBSETS

The problem is to figure out, given a set of subsets each with weights w[i], can there be a combination
that can add up to m. The weights are already sorted in ascending order. We start with the 1st item,
i.e. k=1. For any k, we select the item by setting x[k]=1. The condition to stop recursion (when we get
a feasible solution) is when the sum so far (i.e. s) plus this new item’s weight w[k] equals m, we stop
& display the list. If we haven’t reached a solution & the weight so far + w[k]+ weight of next item
w[k+1] is lesser than the capacity m , then we can select k+1 item also. Hence we call the function
again where sum so far is set to s+w[k], item to choose is k+1, and the residue weight so far is r – w[k]
. If no solution is being reached & the addition of (k+1)th item, for some k, causes the weights total to
exceed m, then we have to drop one of the previous item & hence for an alternate route to solving the
problem. Note before dropping say the kth item we first need to check that a solution is possible
without this item (i.e. sum without the kth item i.e. ‘s’+ sum of residues assuming kth item not taken
i.e. r – w[k] is ≥m, means solution yet possible without kth item) and if with (k+1)th item [next just
heavier item… NOTE the list is already arranged in terms of weight] added to the current sum ‘s’
results is a sum ≤m, then we drop kth item (i.e. x[k]=0) and choose the (k+1)th item by calling the
function again with the parameters of old sum, k as k+1 and residue as r – w[k] (as kth item
unavailable).

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 25

25GRAPH COLOURING

The objective is to colour all ‘n’ node with ‘m’ colours with no two adjacent nodes having the same
colour. The function NextValue checks for node k if we can find a valid colour. x is an array & it
represents the node colour. If x[k] is zero means no valid colour could be found. If k reaches n then all
nodes are over. If neither of these 2 is possible then we need to proceed to the next node.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 26

26

1. Choose the next colour for node k.
2. If no colours left (i.e. x[k]=0) then return control back
3. Loop through all the columns of the adjacency matrix for row k

a. If edge found G[k,j]≠0 & the adjacent node has same colour (i.e. x[k]=x[j]) then go back
to step 1

4. Return control back

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 27

27Dynamic Programming
 The general method
 Multistage Graphs
 All pair shortest path
 Single source shortest path
 Optimal BST
 0/1 knapsack
 TSP
 Flow shop scheduling

DYNAMIC PROGRAMMING – MULTISTAGE GRAPH

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 28

28

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 29

29

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 30

30

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 31

31DYNAMIC PROGRAMMING – ALL PAIRS SHORTEST PATH

If for some k, the cost of i to j is costlier than i to k and k to j, then we update the cost of i to j to cost of
i,k + cost of k,j. Thus we need a tripple for loop & the efficiency is O(n3).

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 32

32DYNAMIC PROGRAMMING

Here we have to find the shortest path of all nodes from v. Again we start by initializing the distance
of all nodes from v in array dist (if there is no link then too it will be initialized to ∞). For every node
u & its adjacent node i incident on u, we see if distance of u (from v) is more than the distance of i
from v + cost of link i,v then we update the distance of u to distance of i + cost of link i,v.

Since there are 3 nested for loop each a function of n, hence the efficiency is O(n3).

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 33

33DYNAMIC PROGRAMMING – TSP

The objective of the travelling salesperson problem is to start from a node, travel through all the
nodes only once & reach back to the start node.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 34

34OBST

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 35

350/1 KNAPSACK

Let me start with an example

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 36

36FLOWSHOP SCHEDULING

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 37

37

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 38

38

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 39

39Branch & Bound
 The General method
 15 puzzle: An example
 Travelling salesman problem

BRANCH BOUND – LC SEARCH – LEAST COST SEARCH

Terminology
 Definition 1

Live node is a node that has been generated but whose children have not yet been generated.
 Definition 2

E-node is a live node whose children are currently being explored. In other words, an E-node is a
node currently being expanded.

 Definition 3
Dead node is a generated node that is not to be expanded or explored any further. All children of a
dead node have already been expanded.

 Definition 4
Branch-and-bound refers to all state space search methods in which all children of an E-node are
generated before any other live node can become the E-node.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 40

40

Let t be the E-node to be expanded. Expanding the E-node results in number of live nodes. For each
such child check if it is the answer. If so then stop & output the solution. If not then store it for further
reference. If any live nodes left to be expanded, then choose the least one (LC based technique) &
make it the E-node & repeat the cycle. If no more live nodes left & we haven’t yet reached a solution
then return NO ANSWER NODE POSSIBLE.

NOTE: The choice of the next E-Node if it is based on some minimum cost then its LC (Least Cost)
method. If choices are put in a queue & then the selection is made then it is called FIFO method & if a
stack is used instead of a queue then its called LIFO method. (Least is the pop/dequeue function)

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 41

4115 PUZZLE

NOTE:
l1=number of number after 1 which are less than 1 & after 1 i.e. 0 in this case
l2= number of number after 2 which are less than 2 & after 2 i.e. 0 in this case (take blank as 16)
l3= number of number after 3 which are less than 3 & after 3 i.e. 1 in this case (take blank as 16)
l4= number of number after 4 which are less than 4 & after 4 i.e. 1 in this case (take blank as 16)
l5= number of number after 5 which are less than 5 & after 5 i.e. 0 in this case (take blank as 16)
l6= number of number after 6 which are less than 6 & after 6 i.e. 0 in this case (take blank as 16)
l7= number of number after 7 which are less than 7 & after 7 i.e. 1 in this case (take blank as 16)
l8= number of number after 8 which are less than 8 & after 8 i.e. 0 in this case (take blank as 16)
l9= number of number after 9 which are less than 9 & after 9 i.e. 0 in this case (take blank as 16)
l10= number of number after 10 which are less than 10 & after 10 i.e. 0 in this case (take blank as 16)
l11= number of number after 11 which are less than 11 & after 11 i.e. 3 in this case (take blank as 16)
l12= number of number after 12 which are less than 12 & after 12 i.e. 6 in this case (take blank as 16)
& so on till l16

Now since blank is in slot 6 of the board, we take x=0

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 42

42If sum of all l’s above & x is odd, then solution not possible from this position.

If it was even then we now test for (utmost) 4 possibilities out of this board & find the ∑l + x for each
& if any is odd then that part of the tree will not be expanded further (bounded).

[SEE EXAMPLE SOLVED IN CLASS]

NOTE:
The above in LIFO would mean that we need to stack the (utmost) 4 option we get from the current
board & then pop one & work on it & then push in the other options resulting from it, & so on

(obviously bounding the branches where is odd).

Using a queue instead of a stack will result in the FIFO method.

For LC Search method we need to device a cost function which can be calculated at each stage & the
choice of the next E-Node can be made based on the cheapest cost. Such a cost function can be called
c(x) which is the length of path from the root node to a nearest goal node (if any) in the sub tree
rooted at x.

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 43

43Thus, c(1)=c(4)=c(10)=c(23)=3. If we had the costs then a very efficient search can be made from the
root node to the goal state along the path where c(x) is same. Hence the only E-nodes are the nodes
along the path from the root to the goal state. Unfortunately, this is an impractical strategy as we
cannot find c(x) looking at a node x &/or its predecessors only.

Thus we try to

At each stage among all the live – nodes we choose that E-Node which has the least approximation
& then make it the E-Node & generate its live nodes, & then from the pool of all live nodes we

choose the next least approximation & so on. LC, with a good choice of , leads to a quicker
solution than FIFO & LIFO.

[TRY TO RE-DO THE CLASSWORK SUM USING LC METHOD]

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 44

44TRAVELLING SALESMAN PROBLEM

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 45

45

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 46

46

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 47

47

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 48

48DIVIDE & CONQUER
• General method
• Binary search
• Finding minimum and maximum
• Merge sort analysis
• Quick sort analysis
• Strassen’s matrix multiplication
• The problem of multiplying long integers
• - constructing Tennis tournament

BINARY SEARCH

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 49

49

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 50

50

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 51

51FINDING MIN MAX

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 52

52

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 53

53

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 54

54MERGE SORT

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 55

55QUICK SORT

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 56

56STRASSENS MULTIPLICATION

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 57

57MULTIPLICATION OF LONG INTEGRES

Tel:9820246760/ 9769479368 Navlakhi®: An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi P a g e | 58

58TENNIS TOURNAMENT

