
By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

MODIFIED BUBBLE SORT

1. Accept n, the number of elements
2. Accept the data (into info)
3. sorted  false
4. Loop pass number from 1 to n

4.1 If sorted = false
4.1.1 sorted  true

4.2 Loop i from 1 to n – pass number
4.2.1If ith element < (i+1)th element

4.2.1.1Switch them
4.2.1.2 sorted  false

4.2.2 else STOP
5. Display the list info

Best Case:

Assuming list is already in ascending order.

Outer loop will execute only once & n – 1 comparisons will be made by inner loop.

Hence efficiency is of the order of n i.e. O(n).

Worst Case:

Assuming list is in descending order.

The outer loop will execute n – 1 time

Each time the inner loop runs n – 1 times, n – 2 times, n – 3 times,…… , 1 time

Hence,

Pass = 0 comparisons = n – 1

Pass = 1 comparisons = n – 2

Pass = 2 comparisons = n – 3

……………………

The sum of comparisons is an Arithmetic Progression and hence the order in n2 i.e.
O(n2).

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

INSERTION SORT

1. Accept n, the number of elements
2. Accept the data (numbers) into info
3. Loop pos from 2 to n in steps of 1

3.1 yinfo(pos)
3.2 Loop i from pos -1 to 1st element steps of -1

3.2.1 if y < info(i)
3.2.1.1 x(i+1) x(i)

3.2.2 else Break out of loop (goto 3.3)
3.3 x(i+1)  y

4. Display the sorted array, info

Best Case:

Assuming list is already in ascending order.
Outer loop will execute n – 1 times. Inner loop will execute only once per outer loop
cycle.
Hence,
Pos = 2 comparisons = 1
Pos = 3 comparisons = 1
………….
Sum of comparisons = n – 1
Hence efficiency is of the order of n i.e. O(n).

Worst Case:
Assuming list is in descending order.
The outer loop will execute n – 1 time
Each time the inner loop runs 1 time, 2 times, 3 times,…n – 1 times
Hence,
Pos = 2 comparisons = 1
Pos = 3 comparisons = 2
Pos = 4 comparisons = 3
……………………
The sum of comparisons is an Arithmetic Progression and hence the order in n2 i.e.
O(n2).

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

SHELL SORT

1. Accept n, the number of elements
2. Accept the data (numbers) into info
3. Set span values (say, 5, 3, 1)
4. Select the next span value

4.1 Loop pos from span to n in steps of 1
4.1.1 y  info(pos)
4.1.2 Loop i from pos – span to 1st element in steps

of –span
4.1.2.1 If y<x[i]

4.1.2.1.1 x(i+span)  x(i)
4.1.2.2 else go to step 4.1.3

4.1.3 x(i+span)  y
5. Repeat step 4 till all span values have been tried
6. Display sorted list

At worst O(n3/2). It's also possible to use sequences other than 1, 4, 13, ... but
they do not necessarily give the same efficiency.

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

RADIX SORT

1. Accept n, the number of elements
2. Accept the numbers into array arr
3. Loop j from units place till no more digits can be

extracted
3.1 Reset all 10 queues by setting front & rear to -1
3.2 Loop through all n numbers
3.3 Extract the jth digit
3.4 Insert the number into jth queue
3.5 Extract all numbers from the queues

4. Display the sorted list

If there are n numbers & the maximum size of a number is m
digits, then in each pass we extract a digit & insert into a
specific queue. We have to do this for all n numbers.

Thus, for units digit n times the above procedure is repeated

For tenths digit again we repeat the procedure n times

For hundredths place we do the same n times

…….

Since the maximum size of the number is m hence the above
goes on m times. Hence the sum is n + n + …. m times=mn
Thus efficiency is O(mn)

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

MERGE SORT

1. Accept n, the number of elements
2. Accept the data into array info
3. size  1
4. Loop while size < n

4.1 l1 0
4.2 k  0
4.3 loop while l1+size<n i.e. while l2 can be found

4.3.1 l2  l1 + size
4.3.2 u1  l2 -1
4.3.3 u2  l2 + size – 1 if it exists else u2  n -1
4.3.4 i  l1
4.3.5 j  l2
4.3.6 Loop till i ≤ u1 and j ≤ u2

4.3.6.1 if info(i) ≤ info(j)
4.3.6.1.1 aux(k)  x(i)
4.3.6.1.2 k  k+1
4.3.6.1.3 i i+1

4.3.6.2 else
4.3.6.2.1 aux(k)  x(j)
4.3.6.2.2 k  k+1
4.3.6.2.3 j  j+1

4.3.7 Dump x(i) into aux(k) if i ≤ u1
4.3.8 Dump x(j) into aux(k) if j ≤ u2
4.3.9 l1  u2 + 1
4.3.10 Dump remaining elements from x(i) to aux(k)
4.3.11 Copy aux into x
4.3.12 Size  size * 2

5. display sorted array x

We have first a partition size of 1 and having total n
comparisons.

Then partition size is 2 with n comparisons again

Then partition size is 4 with n comparisons

This goes on till we don’t have any partitions available.

If there are n numbers we have log2n passes, with n
comparisons in each pass.

Thus the efficiency is of the order of O(n log n).

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

QUICK SORT

1. Accept n, the number of elements
2. Accept the data into array info
3. l  1, rn
4. i  l, jr
5. pivot  a(l)
6. Loop while i<j

6.1. loop while a(i) < pivot
6.1.1. i  i+1

6.2. loop while a(j)>pivot
6.2.1. j  j -1

6.3. If i<j
6.3.1. Swap a(i) and a(j)

7. If l<j
7.1. Repeat step 4 onwards taking r  j -1

8. If i<r
8.1. Repeat step 4 onwards taking l  i + 1

Assuming that n is 2m.

Best Case:

In the first pass we have n comparisons.

Then assuming we have 2 partitions with approx. n/2 elements in each, giving further
n comparisons (approx.) This goes on till we are left with a partition of size 1.

Since we have assumed n is 2m, thus the above procedure will go on m times & we
would get a sum of approx m*n comparisons. But m = log2n, thus total number of
comparisons is of the order of n(log n) i.e. O(n log n).

Worst case:

If the 1st pass results only in one partition i.e. say only left or only right (this will
happen when the pivot is either the largest or smallest in the list), then we have n
comparisons in the 1st pass & then n – 1 in the 2nd pass & n – 3 in the 3rd pass & so
on…. Thus we have n – 1 passes with number of comparisons in each pass being n,
n -1, n – 2, n – 3, …….

Thus the sum of comparisons is an arithmetic progression and hence is order of n2

i.e. O(n2).

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

SELECTION SORT

1. Accept n, the number of elements
2. Accept the data into array x
3. loop i from last position i.e. n -1 to 0 in steps of -1

3.1 large  x(0)
3.2 indx  0
3.3 loop j from 1 to i in steps of 1

3.3.1 if x(j) > large
3.3.1.1 update large  x(j)
3.3.1.2 update indx  j

3.4 x(indx)  x(i)
3.5 x(i)  large

4. Display sorted list , i.e. x

Pass 1: n – 1 comparisons

Pass 2: n – 2 comparisons

Pass 3: n – 3 comparisons

………

Sum of comparisons is an arithmetic progression. Hence the efficiency is of the order
of n2 i.e. O(n2)

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

LINEAR SEARCH

1. Accept n, the number of elements
2. Accept the data into x
3. Accept the data to search, say target
4. Loop i from 0 to n -1 in steps of 1

4.1 if x(i) = target
4.1.1 Display data found
4.1.2 Stop

5. Display no data found

Best Case:

The best case scenario is that we find the target in the first
attempt i.e. at the beginning of the list. Hence the efficiency is
O(1).

Worst case:

This is when we find the target at the end of the list or is absent
in the list. In this case we go through the entire list (i.e. n
comparisons). Hence the efficiency is O(n).

By Abhishek Navlakhi / Tel : 9769479368 / 9820246760 Navlakhi® : An Intellectual Development

www.navlakhi.com / www.navlakhi.mobi
www.navlakhi.tv / www.navlakhi.org

BINARY SEARCH

1. Accept n, the number of data items
2. Accept the data into array x
3. Accept target, the element to search
4. low  0
5. high  n -1
6. loop while low ≤ high

6.1 mid = (low+high)/2
6.2 if target < x(mid)

6.2.1 high = mid -1
6.3 if target > x(mid)

6.3.1 low = mid +1
6.4 if target = x(mid)

6.4.1 Display position mid
6.4.2 Stop

7. Display not found

Best Case:

Again the best case scenario would be that we find the
element in the first attempt i.e. at the centre. In this case the
efficiency is of the order of O(1).

Worst Case:

This will be simulated when the data to be found (target) is not
present in the list or will be the last one found after the
partitioning leads us to only one element in the partition.

Each time we break up the list into half, hence the maximum
number of partitions are log2n. We make one comparison per
pass (i.e. with mid only) & totally we have log n passes. Hence
the efficiency in O(log n).

