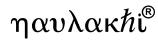
Chapter 3: Relations & Digraphs

Cartesian Product of sets or Product Sets:

Ordered Pair	An <u>ordered pair</u> (x, y) is a listing of objects x & y in the specified order, with x appearing first & y appearing second. Thus an ordered pair is a sequence of length 2.		
Equality of Ordered pairs	Two ordered pair (x_1, y_1) & (x_2, y_2) are equal if & only if $x_1 = x_2$ & $y_1 = y_2$.		
Product Set or Cartesian Product	If A & B are two non – empty sets then the <u>product set or Cartesian product</u> AXB is defined as a set of all ordered pairs (x, y) with xeA & yeB. A X B = { $(x, y) x \in A \text{ and } y \in B$ }		
Example 1:	Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$; find AXB and BXA.		
Note:	The number of elements (ordered pairs) in AXB & BXA is 12. Number of elements in A X B = Number of elements on A X Number of elements in B		
Note:	$ A X B = A B ; B X A = B A A X B \neq B X A A X B = B X A $		
Theorem 1:	For any two finite, non – empty sets A & B, A X B = A B		
Proof:	If set A consists m elements & set B consists of n elements, then, A = m $ B = nFinding A X B involves two task, first selecting the first element of theordered pair from A & secondly selecting an element from set B. i.e.selecting (x, y) such that x \in A & y \in B.Selection of x can be done in m ways (since A has m elements) & selectionof y can be done in n ways (since B has n elements). Thus by principle ofmultiplication we can say that finding elements (x,y) of A X B can be donein m .n ways.i.e. A X B = m . n = A B $		
Example 2:	If $A = B = R$, where R is a set of all real numbers, then, what does (x, y) signify, where x $\in A$ and y $\in B$?		
Example 3:	A survey is to be conducted by Govt. of India. The survey will categorize all male & female Indians based of their education (elementary school, high school, junior college, graduate school, post graduate school). Design the sets & define all possible combinations.		
v I.R	Naviakh®		

Cartesian Product of n sets	If A ₁ , A ₂ , A ₃ ,, A _n are n non – empty finite sets then A ₁ X A ₂ X A ₃ XX A _n is a set of ordered pairs of n – tuples (x ₁ , x ₂ , x ₃ ,, x _n) where x ₁ \in A ₁ , x ₂ \in A ₂ , x ₃ \in A ₃ & x _n \in A _n . Thus, A ₁ X A ₂ X A ₃ XX A _n = {(x ₁ ,x ₂ ,x ₃ ,,x _n) x _i \in A _i , i = 1,2, 3,, n}	
Example 4:	Consider a company that plans releasing it two new software programs for UNIX, WINDOWS98 & WINDOWS XP. As a promotional offer it decided to release a demo version of the software. Help the company in deciding the number of possible combinations it will have to handle in releasing its demo & full versions.	
More Examples:		
Example 5:	 Find the value of x & y so that the following statement is true (a) (y, 3) = (4, 3) (b) (a, 3x) = (a, 9) (c) (3y + 1, 2) = (7, 2) (d) (C, C++) = (y, x) 	
Example 6:	If $A = \{a, b\} \& B = \{1, 2, 3\}$, find (a) $A X B$ (b) $B X A$ (c) $A X A$ (d) $B X B$	
Example 7:	If $A = \{a, b\}, B = \{1, 2, 3\} \& C = \{*, \#\} \text{ find } A X B X C$	
Example 8:	If $A = \{x \mid x \text{ is a real number}\}$ & $B = \{2, 4, 6\}$ sketch each of the following in the Cartesian plane. (a) A X B (b) B X A	
Example 9:	For sets A, B & C investigate whether A X (B \cap C) = (A X B) \cap (A X C).	
Try it yourself		
Problem 1:	Find x & y (a) $(4y, 6) = (16,x)$ (b) $(2y-3, 3x-1) = (5, 7)$ (c) $(x^2, 36) = (81, y)$ (d) $(x, y) = (x^2, y^2)$	
Problem 2:	A car manufacturer decides to launch three cars Accent, Santro, Xing in two possible types of engines – petrol & diesel. Help the company by giving it	
Problem 3:	the count & listing all the possible models & their engine types. If $A = \{a \mid a \text{ is a real number } \& -2 \le a \le 3\}$ $B = \{b \mid 1 \le b \le 5 \land b \in R\},$ sketch the following in the Cartesian plane: (a) $A X B$ (b) $B X A$	
Problem 4:	Show that if A_1 has n_1 elements, A_2 has n_2 elements & A_3 has n_3 elements, then $A_1 \ge A_2 \ge A_3$ has $n_1.n_2.n_3$ elements.	
Problem 5:	If $A \subseteq C$ and $B \subseteq D$, prove that $A \times B \subseteq C \times D$.	
Problem 6:	Let A, B & C be subsets of ξ . Prove that AX(BUC)=(AXB)U(AXC)	



Partition Set or Quotient Set:

_			
Partition Set or Quotient Set	 A <u>partition set</u> or <u>quotient set</u> of 'A' is a collection of sets A₁, A₂, A₃, etc such that each element of set A belong to one of the sets of the partition i.e 		
	$A_1, A_2, A_3, etc.$		
	 If A₁ & A₂ are two elements of the partition (subsets of P(A)) ther A₁∩A₂ = Ø 		
Example 10:	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$		
1	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	$A_6 = \{1, 2, 3, 6, 8, 10\}$		
	Which of the following are partitions of A? $(A + A)$		
	(a) $\{A_1,A_2,A_5\}$ (b) $\{A_1,A_3,A_5\}$ (c) $\{A_3,A_6\}$ (d) $\{A_1,A_2\}$		
Example 11:	List all partitions of {a,b,c,d}		
Example 12:	Give the partition of {0,3,6,9,} containing(a) two infinite sets(b) three infinite sets		
Try it yourself Problem 7: Problem 8:	List all partitions of {1, 2, 3} List one partition of Z		
Relations:			
Relation	Assume that we have a set of men M and a set of women W , some of whom are married. We want to express which men in M are married to which women in W . One way to do that is by listing the set of pairs (m,w) such that m is a man, w is a woman, and m is married to w . So, the relation "married to" can be represented by a subset of the Cartesian product $M \times W$. In general, a <i>relation</i> R from a set A to a set B will be understood as a subset of the Cartesian product $A \times B$, i.e., $R \subseteq A \times B$. If an element $a \in A$ is related to an element $b \in B$, we often write aRb instead of $(a, b) \in R$. The set		
	 {a \epsilon A aRb for some b \epsilon B} is called the <i>domain</i> of R. The set {b \epsilon B aRb for some a \epsilon A} is called the <i>range</i> of R. For instance, in the relation "married to" above, the domain is the set of 		
	married men, and the range is the set of married women. If A and B are the same set, then any subset of $A \times A$ will be a <i>binary relation</i>		

in A. For instance, assume $A = \{1, 2, 3, 4\}$. Then the

binary relation "less than" in A will be:

 $\mathbf{R} = \{(x, y) \in A \times A \mid x < y\}$

 $= \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$

Notation: A set *A* with a binary relation R is sometimes represented by the pair (*A*,R). So, for instance, (Z, \leq) means the set of integers together with the relation of strict inequality.

If A & B are two non – empty sets then R is said to be a relation from A to B if R is a subset of A X B. **Navlakhi**[®]

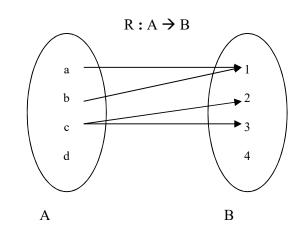
If $(a,b) \in \mathbb{R}$, we say that a **is related to** b **by** \mathbb{R} , which can be written as a \mathbb{R} b. If a is not related to b by R, we write as $a\mathbb{R}b$.

Representation Arrow Diagram or digraph

Venn diagrams and arrows can be used for representing relations between given sets.

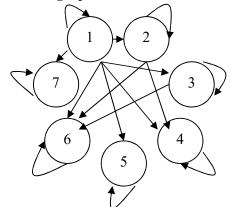
 $A = \{a, b, c, d\}$ to $B = \{1, 2, 3, 4\}$ given by $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}.$ In the diagram an arrow from *x* to *y* means that *x* is related to *y*.

4



Let as find the factor relationship ('is a factor of ') on $A = \{1, 2, 3, 4, 5, 6, 7\}$ The relation is $\mathbf{R} = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6), (1,7), (2,2), (2,4), (2,6),$ (3,3),(3,6),(4,4),(5,5),(6,6),(7,7)

The diagraph or directed graph of the above relationship is as follows:



The circles are called vertices. The arrow is called an edge. An edge exists between two vertices a & b if & only if aRb. Thus the edges correspond to the ordered pairs in R, & the vertices correspond exactly to the elements of set A.

Another way of representing a relation R from A to B is with a matrix. Its rows are labeled with the elements of A, and its columns are labeled with the elements of B. If $a \in A$ and $b \in B$ then we write 1 in row a column b if *a*R*b*, otherwise we write 0.

For instance the relation $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$ from $A = \{a, b, c, d\}$ to $B = \{1, 2, 3, 4\}$ has the following matrix:

Matrix representation

ηαυλακ*ħ*i[®]

navlakhi.com navlakhi.mobi navlakhi.tv

$$M_{R} = \begin{array}{c} a \\ b \\ c \\ d \end{array} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array}$$

Example 13: Let $A = \{1,2,3,4\}$. Define the following relation R (is less than) on A: aRb if & only if a < b

Example 14:	If A=R, the set of real numbers, then	plot the relation
	$\underline{\mathbf{x}^2}$ +	$y^2 = 1$
	4	9

Example 15: Consider the following tariff plan of ABC airlines between 4 cities of India p, q, r, & s.

p, -, -,	2.			
Tariff		Desti	ination	
in Rs.	Р	q	r	S
р		2500	2000	1350
q	1500		3500	2000
r	1000	3650		3200
S	1200	2500	1700	

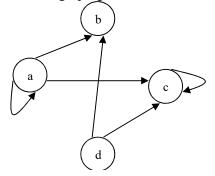
Now the company decides to launch new off – season offers. Help the company in deciding the journey along which the offers can be applied if the decision was taken to give offers only on journeys costing Rs.1750 & more.

Note: The table represents a relation giving the rates of the journey between p, q, r & s. e.g. p to q is Rs.2500 & q to p is Rs.1500 & so on...

Example 16:Let $A = \{1,2,3,4\}$ &
 $R = \{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$
Represent the diagraph for the above relationship.

Example 17:

Find the relation from the diagraph given below:

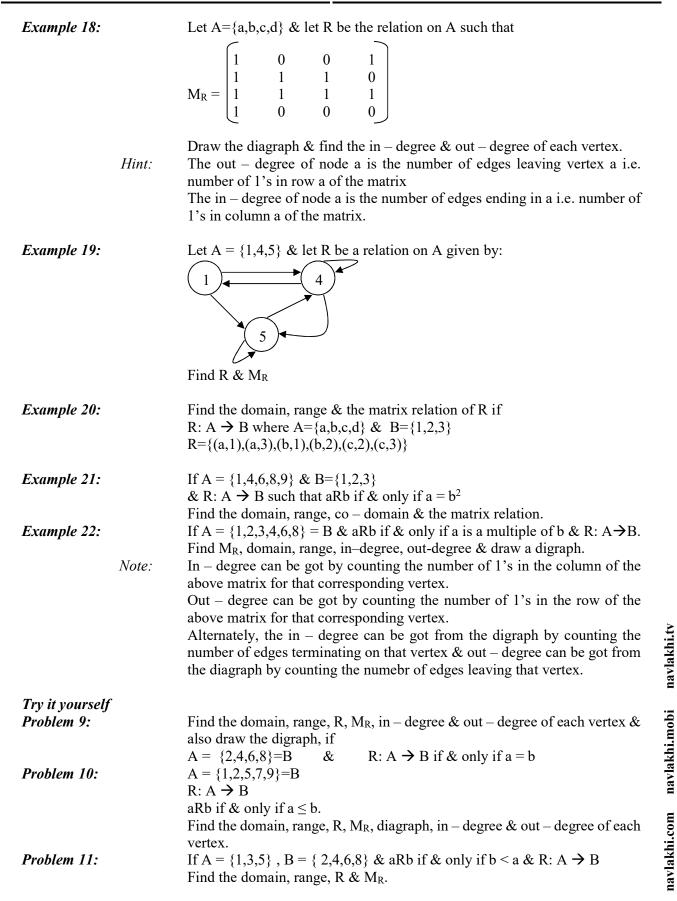


In – degree & out– degree

In – degree of a vertex is the number of edges terminating at that vertex. **Out – degree** of a vertex is the number of edges leaving the vertex. e.g. the in – degree of vertex a in example 17 is 1 & the out – degree of vertex a is 3.

Navlakhi

ηαυλακ*ћ*ί[®]



ηαυλακ*ћ*ί®

Navlakhi®

<i>More Examples: Example 23:</i>	If $A = Z^+$, the set of positive integers, & R is defined as aRb if & only if there exists a k in Z such that $a=b^k$, find which of the following belong to R?		
		(b) (2,32) (e) (8,2)	(c) (3,3) (f) (1,7)
Example 24:			ubers) & if G is a relation on A such that aGb if domain & range.
Example 25:	Let A be the p A?	product set {1,	2,4} X {c,d}. How many relations are there on
Try it yourself Problem 12: Problem 13:	only if $2a + 3$ Find R & drav $A = \{1,2,3,4\}$	b = 6. Find Do w a digraph if	bers & G is a relation on A such that aRb if and $m(G)$ & Ran(G).
	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}1\\0\\1\end{array}$
Problem 14:	If $A = \{a,b,c,M_R = $ $ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	$\begin{array}{ccc} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{array}$	$\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$
Problem 15:	Find R, M_R , i	w a diagraph o n – degree & o	f R ut – degree of each vertex
Problem 16:	Find R, M _R , i	n – degree & o	ut – degree of each vertex.

Navlakhi®

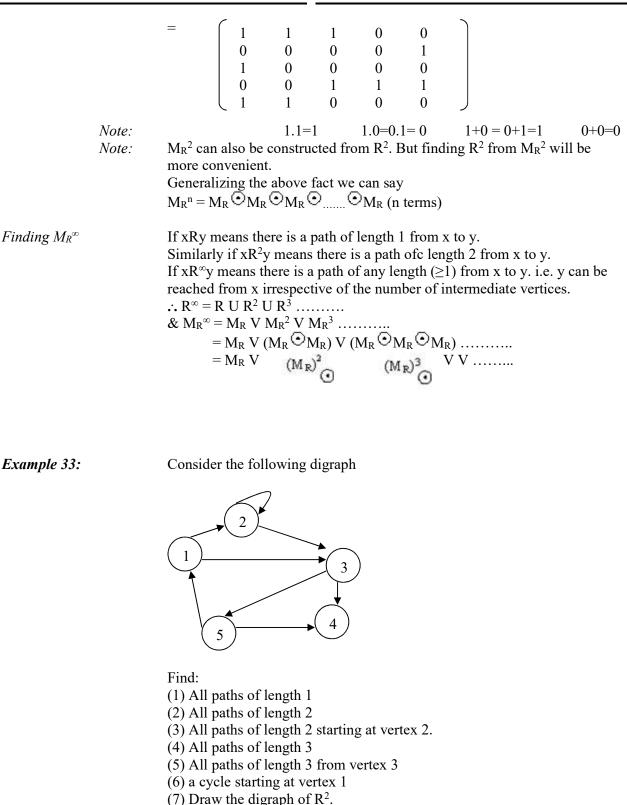
navlakhi.com navlakhi.mobi navlakhi.tv

Restriction of a Relation	If R is a relation on set A i.e. $R \cong A X A \& B$ is a subset of A (i.e. $B \cong A$) then the restriction of R to B is $R \cap (B X B)$.
Example 26:	If $A=\{a,b,c,d,e\}$ $R = \{(a,a),(a,c),(b,c),(a,e),(b,e),(c,e)\}$ & $B = \{a,b,c\}$ Find the restriction of R to B
Try it yourself Problem 17:	If A={(1,1),(1,3),(1,5),(2,2),(2,4),(3,2),(3,5),(4,1),(5,1),(5,3)} Compute the restrictio of R to B for the subset of A given by (a) B={1,3,4,5} (b) B={2,3,4}
R – relative set Not	If R is a relation from A to B R: $A \rightarrow B$ then R – relative set of x, where x ε A, are those values of y ε B for which x is R-related to y. (i.e. xRy) R(x) = {y ε B xRy} If A ₁ = A & R: A \rightarrow B then R-relative set of A ₁ is R(A ₁)={y ε B xRy for some x in A ₁ }
Example 27:	If $A=\{a,b,c\}$ $R=\{(a,a),(a,c),(b,a),(b,c),(c,a)\}$ Find R(a), R(b), R(c). If $A_1=\{b,c\}$ find R(A ₁)
Theorem 2:	
(i Proof:	<i>a)</i> If A ₁ ⊆ A ₂ then R(A ₁) ⊆ R(A ₂) Let x ∈ A ₁ & y ∈ R(A ₁) (i.e. xRy is true) Since A ₁ ⊆ A ₂ & x ∈ A ₁ ∴ x ∈ A ₂ & we know that xRy ∴ y ∈ R(A ₂) ∴ All elements of R(A ₁) belongs to R(A ₂) But there could be an element like q ∈ A ₂ & q ∉ A ₁ . Thus all elements of R(A ₂) may not be a part of R(A ₁). Thus R(A ₁) ⊆ R(A ₂) if A ₁ ⊆A ₂
(I Proof:	b) If $A_1 \cong A_2$ then $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$ Let $x \in A_1 \cup A_2$ & $y \in R(A_1 \cup A_2)$ (i.e. $x Ry$ is true)(I) $\therefore x \in A_1$ &/or $x \in A_2$ & we know that $x Ry$ $\therefore y \in R(A_1)$ &/or $y \in R(A_2)$ $\therefore y \in R(A_1) \cup R(A_2)$ (II) From I & II we can say that $R(A_1 \cup A_2) \cong R(A_1) \cup R(A_2)$ (III) Since $A_1 \cong A_2$ $\therefore A_1 \cong A_1 \cup A_2$ $\therefore R(A_1) \cong R(A_1 \cup A_2)$ (IV) Similarly $A_2 \cong A_1 \cup A_2$ (in fact $A_2 = A_1 \cup A_2$) $\therefore R(A_2) \cong R(A_1 \cup A_2)$ (V) From IV & V
ηαυλακ <i>ћ</i> ί	

	$R(A_1)U R(A_2) := R(A_1UA_2) \dots (VI)$ From III & VI we can say that $R(A_1UA_2) = R(A_1) U R(A_2)$
(c) Proof:	If $A_1 \cong A_2$ then $R(A_1 \cap A_2) \cong R(A_1) \cap R(A_2)$ Let $x \in A_1 \cap A_2$ & $y \in R(A_1 \cap A_2)$ (i.e. xRy)(I) $\therefore x \in A_1$ & $x \in A_2$ Since xRy $\therefore y \in R(A_1)$ & $y \in R(A_2)$ $\therefore y \in R(A_1) \cap R(A_2)$ (II) From I & II $R(A_1 \cap A_2) \cong R(A_1) \cap R(A_2)$
Example 28:	If A=Z, set of integers, & let R be the relation \leq on A. Let A1={0,1,2} & A2={7,8} Find R(A ₁), R(A ₂), R(A ₁ UA ₂), R(A ₁ ∩A ₂)
Example 29:	If $A=\{1,2,3,4\}$ $B=\{a,b,c,d\}$ & R: A \rightarrow B is given by R= {(1,a),(1,c),(2,a),(2,b),(2,d),(3,b),(3,c),(4,c),(4,d)} Let A ₁ ={1,2}& A ₂ ={2,3} find R(A ₁ \cap A ₂)
Try it yourself Problem 18:	If $A = \{1,2,3,4\}$ and $B = \{1,4,6,8\}$ & aRb if & only if a divides b & R: A \rightarrow B Find R(A ₁) if (a) A ₁ = {1,3} (b) A ₁ ={1,3,4}
Problem 19:	If $A=\{1,2,4,6\}=B$ and $R:A \rightarrow B$ and aRb if and only if a is a multiple of b. Find
Problem 20:	(a) R(2) (b) R(4) R{1,4,6} If R: $A \rightarrow B \& A_1 \& A_2$ are subsets of A, then prove that $R(A_1 \cap A_2) = R(A_1) \cap R(A_2)$ if & only if $R(a) \cap R(b) = \{\}$ where a & b are distinct elements of A.
Example 30:	If A has m elements & B has n elements, how many different relations are possible from A to B?
PATHS	
Path	If R is a relation on A, then a path of length n from a to b is a sequence of n edges starting from a & ending at b, where the vertices (traversed in the direction marked on the edges) need not be all distinct. A path is written as $\pi : a_{x_1,x_2,x_3}, \dots, x_{n-1}, b$ where $aRx_1, x_1Rx_2, x_2Rx_3, \dots, x_{n-1}Rb$
Example 31:	
ηαυλακ <i>ћ</i> ί®	Give a path & its length from vertex (i) 1 to 3 (ii) 2 to 2 (iii) 3 to 3 Navlakhi [®]

navlakhi.com navlakhi.mobi navlakhi.tv

Cycle	A cycle is a path that starts & ends at the same vertex.
Connectivity Relation Note:	If there exists a path of length n from x to y where x,y ϵ A & R is a relation on A, then we can symbolize this as xR ⁿ y. xR [∞] y means that there exists a path in R from x to y of some length (≥1). This relationship (R [∞]) is called connectivity relation of R. R ⁿ (x) consists of a set of all y ϵ A such that there exists the relationship xR ⁿ y, i.e. R ⁿ (x) is a set of all vertices of R such that there exists a path of length n from x to that vertex. Similarly R [∞] (x) consists of a set of all vertices which can be reached from x (of any path length). <i>e.g.</i> say a passenger wants to take a flight from India to Kuwait, then if Kuwait ϵ R [∞] (India) then it is possible to go to Kuwait from India. If Kuwait ϵ R ² (India), then the person can do to Kuwait via an intermediate stop (path length =2). In general, if Kuwait ϵ R ⁿ (India) then the person can go to Kuwait via n -1 intermediate stops.
Example 32:	If A={a,b,c,d,e,f} & a relation R on A is given by R={(a,b),(a,c),(b,b),(b,d),(b,e),(c,d),(d,e),(e,f)} Draw the digraph of the relation R ² on A & also find R ^{∞} .
Try it yourself Problem 21:	If A={1,2,3,4,5} & R is a relation on A & is given by R={(1,1),(1,2),(2,3),(3,5),(3,4),(4,5)} Find (i) R ² (ii) R ^{∞}
Boolean Matrix Multiplication Finding M _R ⁿ	$M_{R} = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$M_R^2 = M_R \odot M_R = (M_R)^2$
	$= \left(\begin{array}{c}1 & 1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 1 & 0 \\1 & 0 & 0 & 0 \end{array}\right) \odot \left(\begin{array}{c}1 & 1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 1 \\0 & 0 & 1 & 1 & 0 \\1 & 0 & 0 & 0 & 0\end{array}\right)$
	$= \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
ηαυλακ <i>ћ</i> ί [®]	Navlakhi®

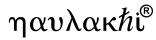


11

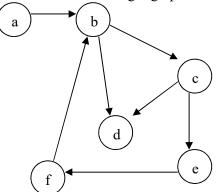
ηαυλακ*ħ*i[®]

(8) MR² (9) R^{∞} (10) M_{R}^{∞}

Try it yourself Problem 22:	b
	e d
	Find
	(1) All paths of length 1
	(2) All paths of length 2
	(3) All paths of length 2 from vertex e.
	(4) All paths of length 3(5) All paths of length 3 from vertex e
	(6) A cycle starting at e
	(7) Draw the digraph of \mathbb{R}^2
	(8) M_R^2
	$(9) \mathbb{R}^{\infty}$
Problem 23:	(10) M_R^{∞} Let R & S be relations on set A. Show that
1100tem 25.	$M_{RUS} = M_R V M_S$
Problem 24:	Let R be a relation on A. Show that
	$M_R^* = M_R^{\infty} V I_n$
	where I_n is a n X n identity matrix & n is the number of elements of set A.
<i>Reachability relation</i> (<i>R</i> *)	Reachability between two vertices x & y (i.e. xR^*y) is defined if it is possible to reach y from x. i.e. if $x = y$ or if $xR^{\infty}y$ $M_R^* = M_R^{\infty} V I_n$
	where I_n is a n X n identity matrix
	$ \dots M_{\mathbb{R}^{\infty}} = [M_{\mathbb{R}} V \qquad (M_{\mathbb{R}})^{2} \qquad (M_{\mathbb{R}})^{3} \qquad V V \dots] V I_{n} $
	If π_1 : $a_1, x_1, x_2, x_3, \dots, x_{n-1}, b$ is a path of n edges from a to b. & π_2 : $b, y_1, y_2, y_3, \dots, y_{m-1}, c$
	is a path of length m from a to c. Then it is obvious that path from a to c exists & is given by the composition π_2 o π_1 : a,x ₁ ,x ₂ ,,x _{n-1} ,b,y ₁ ,y ₂ ,,y _{n-1} ,c
	which is of length $n + m$.



Consider the following digraph



Find a path from a to c & from c to d of lenth >1 & also find their composition.

Try it yourself		
Problem 25:	If π_1 : 1,3,5,2	$\pi_2: 2,5,7,9$
	Find π_2 o π_1	
Problem 26:	If π_1 : a,b,d	π_2 : d,c,f,g
	Find the com	position π_2 o π_1

PROPERTIES OF RELATIONS:

Types of relations	 A relation can be Reflexive Irreflexive Symmetric Asymmetric Antisymmetric Transitive Equivalence relation
Reflexive & Irreflexive Relations Note:	A relation is reflexive if (a,a) $\in \mathbb{R}$ for all $a \in A$ i.e. $a \mathbb{R}a$ for all $a \in A$. Irreflexive relation is one in which (a,a) $\notin \mathbb{R}$ for all $a \in A$ i.e. $a \mathbb{K}a$ for all $a \in A$ A realtion may not be reflecxive & neither irreflexive The matrix of a reflexive relation will have all the major diagonal elements as 1. $M_{\mathbb{R}} = \begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix}$

An **irreflexive relation** in a **matrix** form would have all the major diagonal elements as 0.

ηαυλακħi[®]

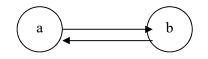
	$M_{R} = \begin{bmatrix} 0 & x & x \\ x & 0 & x \\ x & x & 0 \end{bmatrix}$			
	In the digraph of a reflexive relation all the vertices will have cycles of length 1 (i.e. an edge from a vertex to that vertex itself). The digraph of a irreflexive relation will have no cycles of length 1. In a reflexive relation Dom(R) = Ran(R) = A (where R is a erlation on A)			
Symmetric, Asymmetric & Antisymmetric	A relation is a symmetric relation if $(a,b)\in R$ then $(b,a)\in R$. i.e if aRb then bRa. A relation is asymmetric if $(a,b)\in R$ then $(b,a)\notin R$ i.e. if aRb then bKa A relation is antisymmetric if $(a,b)\in R$ then $(b,a)\in R$ only if $a=b$. i.e. aRb then bRa if & only if $a=b$. \therefore A relation is not antisymmetric if there is some $a \neq b$ & $(a,b)\in R$ & $(b,a)\in R$ i.e. There is some aRb & bRa & $a\neq b$. OR simply if $a\neq b$ then $a \not k b$ or $b \not k a$ then R is antisymmetric. i.e. if $a\neq b$ & $(a,b)\in R$ then $(b,a) \notin R$.			
	Matrix of a symmetric relation will be such that If $m_{ij} = 1$ then $m_{ji} = 1$ & if $m_{ij} = 0$ then $m_{ji} = 0$ i.e. $M_R = M_R^T$			
Note:	Matrix of a asymmetric relation is such that If $m_{ij} = 1$ then $m_{ji} = 0$ $m_{ii} = 0$ i.e. the main diagonal elements will be zero.			
Note:	Matrix of a antisymmetric relation will be such that $m_{ij} = 0$ OR $m_{ji} = 0$ for $j \neq i$ (i.e. for non – diagonal elements). The main diagonal elements may be 1 or 0.			
Example 35: (a)	Identify which of the following matrix of relations are symmetric, asymmetric, antisymmetric. $M_{R} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			
(b)	$\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$			
(C)	$\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$			

ηαυλακ $\hbar i^{e}$

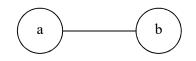
Navlakhi®

Digraphs

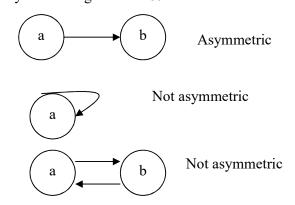
Digraph of a **symmetric relation** is such that if there is an edge from vertex a to vertex b then there should be an edge from vertex b to vertex a also.



This type of edges from a to b & b to a can be replaced by an unidirectional edge. The resulting figure is called a **graph**. Thus is a graph all the edges are bidirectional i.e. all graphs are symmetric relations.

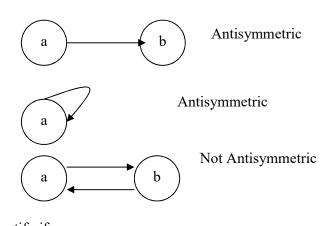


Note: Cycles of length 1 are allowed
 Digraph of a asymmetric relation is such that if there is a edge from vertex a to vertex b then there should be no edge from vertex b to vertex a. Even cycles of length 1 are not allowed.



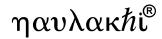
Digraph of a **antisymmteric relation** is such that if a & b are two distinct vertices & an edge exists from a to b the there should be no edge from b to a.

Cycles of length 1 are allowed.

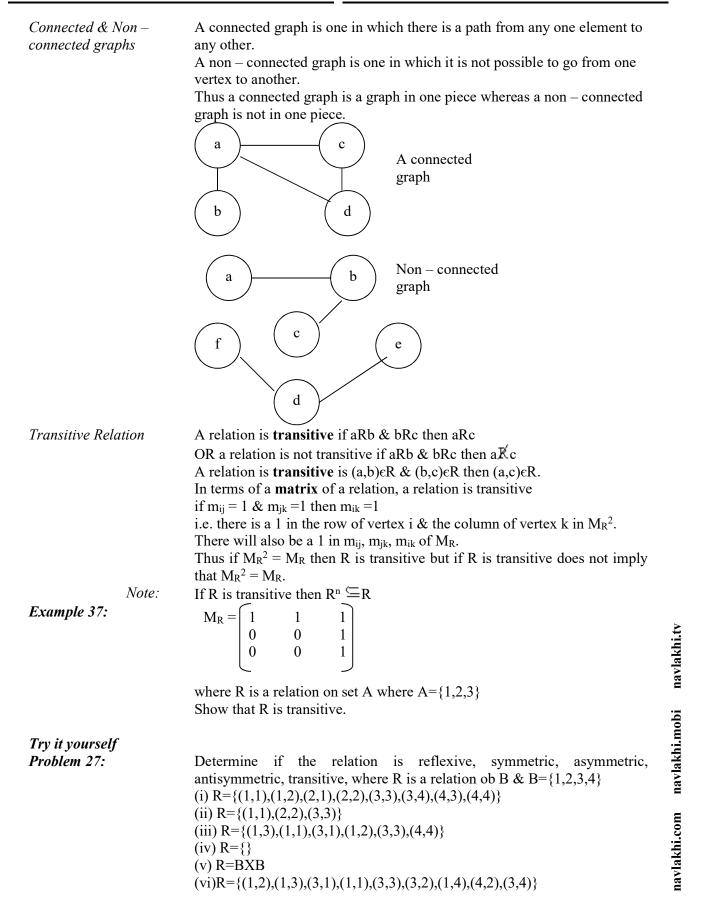


Example 36:

Identify if R={(a,b),(b,a),(a,c),(c,a),(b,c),(c,b),(b,e),(e,b),(e,d),(d,e), (c,d),(d,c)} is a symmetric, asymmetric, antisymmetric relation if R is a relation on A where A={a,b,c,d,e}



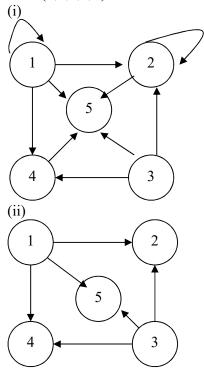
Navlakhi®



ηαυλακ*ћ*ί[®]

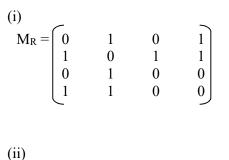
Navlakhi®

If $B = \{1, 2, 3, 4, 5\}$ & R is a relation on B given by



Find if the above relations are reflexive, symmetric, asymmetric, antisymmetric, transitive.

If R is a relation on B & $B = \{a, b, c, d\}$ & the matrix of R is given by below. Find which of the matrices are reflexive, symmetric, asymmetric, antisymmetric, transitive.

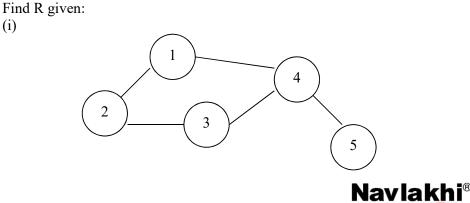


\sim			-
1	1	0	0
1	1	0	0
0	0	1	0
0	0	0	1
$\overline{\ }$			-
	$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$	$ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} $	$ \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $

(i)

Problem 30:

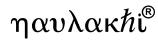
Problem 29:

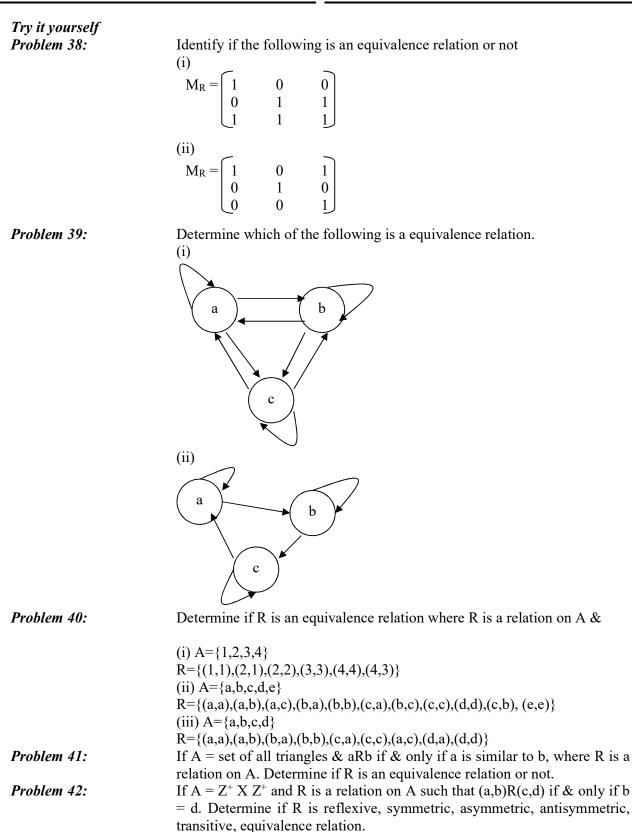


navlakhi.com navlakhi.mobi navlakhi.tv

ηαυλακ $\hbar i^{\mathbb{B}}$

	(ii)
	a d
	b c e
Problem 31:	Draw the graph of R if R is a symmetric relation $R=\{(a,b),(b,a),(a,c),(c,a),(d,a),(a,d),(a,a),(b,b)\}$ where R is a relation on B & B= $\{a,b,c,d\}$
More Examples: Example 38:	Determine if R is reflexive, symmetric, asymmetric, antisymmetric where A=Z & aRb if & only if $a \le b+2$
Example 39:	If $A = Z$ & aRb if & only if a+b is even. Determine if R is reflexive, symmetric, asymmetric, antisymmetric, transitive.
Example 40:	If S={1,2,3,4} A = S X S & R is a relation on A such that (a,b) R (c,d) if & only if ad = bc. Determine if R is reflexive, symmetric, asymmetric, antisymmetric, transitive.
Try it yourself	
Problem 32:	If $A=Z^+$, aRb if & only if $a=b^k$ for some $k \in Z^+$. Determine if R is reflexive, symmetric, asymmetric, antisymmetric, transitive.
Problem 33:	If A=Z & aRb if & only if $ a - b = 2$ where R is a relation on A. Determine if R is reflexive, symmetric, asymmetric, antisymmetric, transitive.
Problem 34:	If A is a set of all lines in a plane & aRb if & only if a is parallel to b where R is a relation on A. Determine if R is reflexive, symmetric, asymmetric,
Problem 35:	antisymmetric, transitive. Let $A = set of all ordered pairs of real numbers. (a,b)R(c,d) if & only if a = c, where R is a relation on A. Determine if R is reflexive, symmetric, asymmetric, antisymmetric, transitive.$
More Examples:	
Example 41:	Show that if a relation on set A is transitive & irreflexive then it is asymmetric.
Try it yourself	
Problem 36:	Prove that if R is a relation on set A & is symmetric then R^2 is also symmetric.
Problem 37:	Let R be a non – empty relation on set A. Suppose that R is symmetric & transitive, then show that R is not irrreflexive.
Equivalence Relation	If a relation is reflexive, symmetric & transitive then it is an equivalence relation.





ηαυλακ*ћ*ί[®]

Navlakhi®

navlakhi.com navlakhi.mobi navlakhi.tv

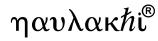
Equivalence Relation from Partitions or equivalence classes Theorem 3:	If P is the partition of a set A & R is the equivalence relation required on A then we can define R as aRb if & only if a & b are members of the same block (same set of the partition). If P is the partition of a set A & R is the equivalence relation required on A then we can define R as aRb if & only if a & b are members of the same block (same set of the partition).
Proof:	 aRa means a & a are members of the same block, which is obviously true. R is reflexive. aRb means a & b are members of the same block. b & a are also members of the same block bRa is also true R is symmetric.
	 If aRb & bRc means a & b are members of the same block & b & c are also members of the same block, i.e. a,b & c all belong to the same block. ∴ a & c belong to the same block ∴ aRc is true. ∴ R is transitive. ∴ R is an equivalence relation determined by the partition P.
Example 42: Note: Note:	Let $A=\{a,b,c,d\}$ and consider the partition $P=\{\{a,b,c\},\{d\}\}\$ of A. Find the equivalence relation R on A determined by P. Since a, b & c all belong to the same block $R(a)=R(b)=R(c)$ R(a) is sometimes written as [a] & is called equivalence classes of R. \therefore The partition consists of all equivalence classes of r & this partition is denoted by A/R. i.e. P is a quotient set of A that is constructed from & determines R.
Example 44: Note:	 If A={1,2,3,4} & R is a equivalence relation given as R={(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)} Determine the equivalence classes & A/R. ∴ Steps involved in finding A/R are Choose an element 'a' of set A & find equivalence class R(a). If R(a) ≠ A, then choose another element 'b' from A such that b^g R(a) & then find R(b) If the union of the equivalence classes obtained so far is not equal to A then choose another element c^g union of the equivalence classes obtained so far is not equal to A then choose another element c^g union of the equivalence classes obtained so far is not equal to A then choose step until all elements of A are included in the computed equivalence classes. If A is an infinite set then the process goes on indefinitely. But, we stop at a point when we emerge with a pattern.
Example 45:	Let $B=\{1,2,3,4,5\}$ & A=BXB & R be a relation on A such that $(a,b)R(a',b')$ if & only if $ab'=a'b$. Show that R is an equivalence relation & find A/R.
Try it yourself Problem 43:	If $P = \{\{a,c,e\},\{b,d,f\}\}\$ is a partition of $A = \{a,b,c,d,e,f\}$. Find the equivalence relation on A.
Problem 44:	Let B={1,2,3,4} & let A= BXB. Let R be a relation on A such that (a,b)R(a',b') if & only if a+b = a'+b' (i) Show that R is an equivalence relation
ηαυλακ <i>ћ</i> ί®	(ii) Compute A/R. Navlakhi [®]

ηαυλακ*ћ*ί®

Example 45:		A relation R on set A is called circular if aRb & bRc implies cRa. Show that				
	Ans:	R is reflexive & circular if & only if it is an equivalence relation. Let us assume R is reflexive & circular, then we shall show that it an equivalence relation.				
		Say aRb then bRb (since reflexive)				
		Since R is circular therefore the above statement will also imply bRa.				
		Thus, if aRb then bRa				
		. R is symmetric.				
		If aRb & bRc then cRa (since R is circular)				
		But R is also symmetric				
		cRa implies aRc.				
		∴ aRb & bRc implies aRc				
		R is a transitive relation.				
		Since we have shown R to be reflexive, symmetric & transitive \therefore R is an				
		equivalence relation.				
		If R is reflexive & circular then it is an equivalence relation				
		I)				
		Now we assume R to be an equivalence relation & show that it is reflexive				
		& circular.				
		Since R is an equivalence relation it is obviously reflexive.				
		Since R is an equivalence relation				
		aRb & bRc then aRc				
		But R is also symmetric				
		∴ aRc implies cRa				
		aRb & bRc then cRa				
		R is circular.				
		If R is an equivalence relation the it is reflexive & circular(II				
)				
		From I & II we conclude that				
		R is reflexive & circular if & only if it is an equivalence relation				

Manipulation Of Relations:

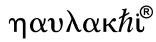
	Complementary relation (\overline{R}): a \overline{R} b if & only if a \mathbb{K} b a(R∩S)b if & only if aRb & bRa a(RUS)b if & only if aRb or aSb A(R \oplus S) means aRb & a \mathbb{K} b or a \mathbb{K} b & aSb Inverse relation (R ⁻¹): bR ⁻¹ a if & only if aRb i.e. (a,b) \in R then (b,a) $\in R^{-1}$. (R ⁻¹) ⁻¹ = R Dom(R ⁻¹) = Ran(R) Ran(R ⁻¹) = Dom(R)
Example 46:	Let A={1,2,3,4} & B={a,b,c} & R & S be relations from A to B such that R={(1,a),(1,c),(2,a),(2,c),(3,b),(4,b),(4,c)} S={(1,b),(2,c),(3,a),(3,b),(4,b),(4,c)} Find (a) \overline{R} (b) R \cap S (c) RUS (d) R ⁻¹



Navlakhi®

Try it yourself Problem 45: Problem 46:	Find $\overline{\mathbb{R}}$, $\overline{\mathbb{S}}$, $\mathbb{R} \cap S$, RUS, \mathbb{R}^{-1} , \mathbb{S}^{-1} if $A=B=\{1,2,3\} \& \mathbb{R} \& S$ are relations from A to B given by $\mathbb{R}=\{(1,1),(1,2),(2,3),(3,1)\}$ $S=\{(2,1),(3,1),(3,2),(3,3)\}$ Find $\overline{\mathbb{R}}$, $\overline{\mathbb{S}}$, $\mathbb{R} \cap S$, RUS, \mathbb{R}^{-1} , \mathbb{S}^{-1} if $A=\{1,2,3\} \& B=\{a,b,c\} \& \mathbb{R} \& S$ are relations from A to B given by $\mathbb{R}=\{(1,a),(2,a),(3,b),(3,c)\}$ $\& S=\{(1,a),(1,b),(2,a),(2,b)\}$
	 In a digraph R is all the possible edges that are missing. R∩S are all the edges common in the diagraph of R & S. RUS are all the edges of R & S. R ⊕S means only those edges of R which are not in S OR those edges of S that are not in R. R⁻¹ is obtained by inverting all the edges directions.
Example 47:	If A={a,b,c,d,e} & R & S are two relations on A given as a b c d c d c d
Try it yourself Problem 47:	Find $\overline{\mathbb{R}}$, $\overline{\mathbb{S}}$, \mathbb{R}^{-1} , \mathbb{S}^{-1} , $\mathbb{R}US$, $\mathbb{R}\cap S$ of \mathbb{R} : $1 \qquad 2 \qquad $
	For a matrix M_R , $M\overline{R}$ is obtained by replacing all 0's by 1's & all 1's by 0's

0's.
$$\begin{split} M_R^{-1} & \text{is nothing but } M_R^T \\ M_{RUS} &= M_R \ V \ M_S \\ M_{R\cap S} &= M_R \ \Lambda \ M_S \end{split}$$



Navlakhi®

navlakhi.com navlakhi.mobi navlakhi.tv

Try it yourself Problem 48:	Let A = {a,b,c} B = {1,2,3,4} Let R & S be two relations from A to B such that $M_{R} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$
Problem 49:	$M_{S} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$ Find \overline{R} , \overline{S} , R^{-1} , S^{-1} , RUS, $R \cap S$ If $M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
	$M_{\rm S} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Find M $\overline{\mathbb{R}}$, M $\overline{\mathbb{S}}$, M _R ⁻¹ , M _S ⁻¹
Problem 50:	Let $A = B = \{1,2,3,4\}$ $R = \{(1,1),(1,2),(1,3),(3,1),(4,2),(4,3),(4,4)\}$ $S = \{(1,1),(2,3),(3,4),(4,3),(4,4)\}$ Find $M \overline{R}$, $M \overline{S}$, $M_{R^{-1}}$, $M_{S^{-1}}$, M_{RUS} , $M_{R \cap S}$
Example 48:	If A= $\{1,2,3,4,5,6\}$ & R & S are two equivalence relations on A where R= $\{(1,2),(1,1),(2,1),(2,2),(3,3),(4,4),(5,5),(5,6),(6,5),(6,6)\}$ S= $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,6),(4,4),(6,4),(6,6),(5,5)\}$ Compute the partition of R \cap S.
Try it yourself Problem 51:	Let A= $\{1,2,3,4,5\}$ & let R & S be two equivalence relations on A where M _R & M _S are as given below:
$M_{\rm R} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Compute the partition of A corresponding to $R \cap S$

navlakhi.com navlakhi.mobi navlakhi.tv

Closures:	
	If R is a relation on A & say it does not possess a given property (e.g reflexivity). Say we want to make R posses that property by adding as few pairs as possible. The smallest relation thus obtained (say R_1 on A), which posses that property desired is called closure of R with respect to the property in question.
	e.g. Say R is a relation on A which is not reflexive then $R_1 = R \cup \Delta$ where $\Delta = \{(a,a) a \in A\}$ is called the <u>reflexive closure</u> of R.
	 e.g. If R is not symmetric i.e. there exists some (x,y)∈R such that (y,x) \$\$R. If (x,y)∈R then (y,x)∈R⁻¹ ∴ RUR⁻¹ will be symmetric [(RUR⁻¹)⁻¹=RUR⁻¹] ∴RUR⁻¹ is the symmetric closure of R.
Example 49:	If A={1,2,3,4} & R={(1,2),(2,3),(1,3),(3,4)} Find the reflexive & symmetric closure of R.
	In terms of a diagraph a <u>reflexive closure</u> will have cycles of length 1 from each vertex & a <u>symmetric closure</u> will have all edges bidirectional (i.e. a graph).
Composition of Re	elations
	Let R be a relation from A to B & S be a relation from B to C, then $S \circ R$ is a relation from A to C such that $a(S \circ R)b$ if & only if there is some b for which aRb & bSc.
Example 50:	Let $A = \{a,b,c,d\}$ $R = \{(a,a),(a,b),(a,c),(b,d),(c,b)\}$ $S = \{(a,d),(a,c),(b,c),(c,a),(d,a)\}$ Find S \circ R.
Note:	The relative set $(S \circ R)(A_1) = S(R(A_1))$
Try it yourself: Problem 52:	Let $A = \{1,2,3,4\}$ $R = \{(1,1),(1,2),(2,3),(2,4),(3,4),(4,1),(4,3)\}$

 $S = \{(3,1), (4,4), (2,3), (2,4), (1,1), (1,4)\}$

A closer look at the logic of finding $M_{S \circ R}$ reveals an interesting fact that

Find S \circ R, R \circ R, S \circ S, R \circ S.

in row 'a' column 'c' of $M_{S^{\circ}R}.$

 $M_{S \circ R} = M_R \odot M_S$

24

If R & S are equivalence relations then is SOR an equivalence relation. In terms of matrix of a relation $M_{S \circ R}$ is obtained by identifying a 1 in say row 'a' column 'b' in R then a 1 in row 'b' column 'c' of S, resulting in a 1

navlakhi.com navlakhi.mobi navlakhi.tv

ηαυλακ*ћ*ί[®]

Problem 53:

Navlakhi[®]

Tel: 9769479368 / 9820246760			25		Abhishek	Navlakhi	/Discrete Structures
Example 51:	If A = {1,2,3 $M_{R} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$ Find M _{SoR} he				$M_{S} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	0 1 0	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
Example 52:		ation fro	om A to			lations fr	om B to C. Prove
Try it yourself: Problem 54:		$\circ_{\mathrm{R}}, \mathrm{M}_{\mathrm{R}}\circ$	s, Msos,	M _{R°R} &	k hence find S	50 R, R 05	5, S°S, R°R
	(b) $M_{R} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ $M_{R} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0 1 1 0	0 0 1 1	0 1 0 0 1	$\begin{pmatrix} 1\\0\\1\\0\\1\\\end{pmatrix}$		
	$M_{S} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$	0 1 1 0	0 0 0 1	1 0 1 1 0	$ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 0\\ \end{array} $		
Problem 55: Problem 56:	Let R be a rel or disapprove	ation fro e (S∩T) ation fro	om A to $\circ R = (Som A to)$	B & let S○R)∩(B & let	S and T be re T○R)		om B to C. Prove om B to C. Show
Some important characteristics	• $M_{To}(3)$ • $M_{(To}(3))$ • $(M_R G)$ • $M_{To}(3)$ • $T \circ (SG)$ • $S \circ R_{\frac{1}{2}}$	$S_{S} \circ R = M$ $M_{S} \circ M_{S} \circ C$ $S_{S} \circ R_{S} = M$ $C \circ R = (1)$	$\begin{bmatrix} \mathbf{I} \\ \mathbf{S} \circ \mathbf{R} \\ \mathbf{O} \\ \mathbf{M}_{\mathrm{T}} $	$M_{T} = (N_{S} \odot M_{T})$ $M_{R} \odot (N_{R} \odot (N_{R}))$	Λ _R ⊙ M _S) ⊙ M) Λ _S ⊙ M _T)		
ηαυλακħi®	• (SOK)) – K	00				Navlakhi®

ηαυλακħi®

Transitive Closure & Warshall's Algorithm:

R^{∞} is the transitive closure of R i.e. R^{∞} is the smallest transitive relation containing R. (Theorem in e*theo supplement)				
Via digraph done earlier The disadvantage of the above technique is that it is not methodological & can get very impractical for large sets & relations. If A is a set such that $ A = n$ then $M_R \infty = M_R V(M_R \odot M_R) V(M_R \odot M_R \odot M_R) \dots (M_R \odot M_R \odot M_R \odot \dots n \text{ terms})$ e.g. if $n = 3$ then $M_R \infty = M_R V(M_R \odot M_R) V(M_R \odot M_R \odot M_R)$ (Theorem in e*theo supplement) The above technique though methodological is inefficient for large matrices. If $A = \{1,2,3,4\}$ $R = \{(1,2),(2,3),(3,4),(2,1)\}$ Find the transitive closure of R.				
 Let W₀ = M_R Find W₁ as follows Copy all 1's of W₀ into W₁ Look in W₀ at column 1 & note down the positions at which a 1 occurs. Then look at row 1 & note down the positions at which a 1 occurs. Not put a 1 in W₁ at all possible rows, columns obtained from the foregoing analysis. e.g. on monitoring column 1, 1's were at position 3 & 5; on monitoring row 1 say 1's were at position 2, 3 & 4, then we put a 1 in W₁ at row 3 column 2, 3 & 4 & also in row 5 column 2, 3 & 4. Find W₂ (same method as above) but now we look at column 2 & row 2 of W₁. and so on				
Redo example 53 using Warshall's algoritm.				
$M_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ $M_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ Where R & S are relations on A={1,2,3,4,5}				

Find the smallest equivalence relation containing R & also find the partition of A that it produces.

ηαυλακ $\hbar i^{e}$

navlakhi.com navlakhi.mobi navlakhi.tv

Try it yourself: Problem 57:

Let A={a,b,c,d} Find the transitive closure by Warshall's algorithm (a)

Problem 58:

If $A = \{1, 2, 3, 4, 5\}$

& R & S are equivalence relations on A. Find the smallest equivalence relation containing R & S & list the elements of this relation & the partition of A corresponding to the equivalence relations found.

(a)

$M_R =$	$\int 1$	1	1	0	0
IVIK	1	1	1	0	0
	1	1	1	0	0
	0	0	0	1	1
	0	0	0	1	IJ
$M_S =$	1	0	0	0	0
	1 0 0	1	1	1	0
	0	1	1	1	0
	0	1	1	1	0
	\bigcirc	0	0	0	ν

(b)	_				_
$M_R =$	[1	0	0	0	0
	0	1	1	0	0
	0	1	1	0	0
	0	0	0	1	1
	0	0	0	1	1
	ζ				~

navlakhi.com navlakhi.mobi navlakhi.tv

ηαυλακ*ћ*ί[®]

	\sim				~
$M_S =$	1	1	0	0	0
	1 1	1	0	0	0
	0	0	1	0	0
	0 0	0	0	1	0
	0	0	0	0	1
	l				

Note: If R & S are two equivalence relations on A then RUS will also be reflexive & symmetric but may not be transitive.

Problem 59:

Let A =	=_{a,b,c,e	d,e} & l	et R &	S be rel	ations on A given by
$M_R =$	1	0	1	0	1
	0	0	0	1	0
	1	0	0	0	0
	0	0	1	1	0
	$\lfloor 1$	0	1	0	0
					$\overline{)}$
$M_S =$	$\overline{0}$	1	0	1	0
	1	1	0	0	1
	1	1	1	0	0
	0	1	0	0	0
	0	1	0	1	0
					\mathcal{I}

Using Warshall's algorithm compute the transitive closure of RUS.

