Navlakhi ${ }^{\circledR}$

ENGINEERING DRAWING

Simply the BEST

 navlakhi.com | navlakhi.education navlakhi.tv | navlakhi.studio | navlakhi.org Contact: Kunal Navlakhi/Abhishek Navlakhi Tel: 9820246760 / 9769479368 / 9820009639KNOW YOUR INSTRUCTORS

NEME:	KUNAL NAVLAKHI
QUALIFICATION:	B.E. Electronics, Entrepreneurship Management, Wellingkar, > International Executive Management, UBS,Belgium
EXPERIENCE:	>2 yrs in Educational Technology Unit at NCST $>$ More than 17 yrs of coaching experience
SロME ACADEMIC ACHIEVEMENTS:	Distinction in MBA from Wellingkar $>$ First class each year in engineering $>$ Second Rank in Engineering Degree College $>90 / 100$ in maths in ICSE > 97/100 in maths in HSC

NAME:	ABHISHEK NAVLAKHI
QUALIFICATION:	> B.E. Computers
EXPERIENCE:	>2 years as programmer at CMC Ltd. $>$ More than 17 yrs of coaching experience
Same Academic ACHIEVEMENTS:	First class each year in engineering 92 percentile in Data Structures at the all India NCST G level exam $>100 / 100$ in physics at hsc (1st in maharashtra) $>89.5 \%$ aggregate In hsc $>192 / 200$ in electronics at hsc $>96 / 100$ in maths @ ICSE $>94 / 100$ in Science @ ICSE

Combined semester discount 6 Subjects RS. 55000 only FEATURES:

Maximum Batch Size 10 students

Over 300 questions solved in class for Mechanics \& BEE Over 100 programs solved in class for SPA
Over 250 questions solved in class for engineering drawing Over 300 problems solved in class for Maths1 \& Maths2 Exhaustive practice done in class for all subjects Personal attention with think - \& - solve approach

Best One Can Get....

Tel: 9769479368 / 9820246760

This is to Certify that Quality Management System of

NAVLAKHI

708, A. C. MARKET BULDING,TARDEO ROAD, MUMBAI- 400034.

has been assessed and found to conform to the requirements of
ISO 9001:2015
for the following scope :

COACHING FOR MATHEMATICS, SCIENCE \& TECHNOLOGY FOR SCHOOLS AND COLLEGES

Certificate No
Initial Registration Date
Date of Expiry
1st Surve. Due \qquad
: 19EQBA47
: 07/11/2019
: 06/11/2022
:07/10/2020 2nd Surve. Due : 07/10/2021
Issuance Date : 07/11/2019

Navlakhi ${ }^{\circledR}$

Chapter l:

Engineering

Curves

Abhishek Navlakhi

(Tel: 9820246760 / 9769479368)

Navlakhi ${ }^{\circledR}$

Engineering Drawing

70

1. Cycloid
2. Inferior trochoid

Epicycloid and Epitrochoid

1. Epicycloid
2. $\begin{aligned} & \text { miferior epitrochoid } \\ & \text { 3. } \\ & \text { Superior epitrochoid }\end{aligned}$

Hypocycloid and Hypotrochoid

1. Hypocycloid
2. $\begin{aligned} & \text { Hypocycloid } \\ & \text { Inferior Hypotrochoid }\end{aligned}$
3. Superior Hypotrochoid
1.6.2.1 Cycloid and Trochoid
4. Cydold

Example 51 : A circle of 40 mm diameler rolls along a straight line without slipping. Draw the curve triced Draw a tangent to the curve at a point on it 27 mp from the line.

Refer Fig. 1.90

Fig. 1.90
4

Engineering Drawing

71
Basic Graphical Technique.
Procedure:-

1. Draw a circle of diameter 40 mm and mark its centre as C
2. Mark point P on the circumference of the circle as the initial position of a point P.
3. Divide the circle into 12 equal parts and mark on the circle $1^{\prime}, 2^{\prime}, \ldots, 12^{\prime}$ in opposite direction to rotation
4. Draw line PA tangent to the circle as the directing line and of length equal to the circumference of the circle $=\pi \mathrm{D}=\frac{22}{7} \times 40=125.7 \mathrm{~mm}$.
5. Draw horizontal lines or parallel lines to the directing line through $1^{\prime}, 2^{\prime}, \ldots, 12^{\prime}$.
6. Divide line PA into 12 equal parts and mark them by $1,2, . .12$
7. From C draw parallel line to directing line and mark on it $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{12}$ corresponding to $1,2, . .12$ of the directing line.
8. Now, when the circle has rolled without slip by $\frac{1}{12}$ th of a revolution, the centre point C must have moved to $C_{\text {, and the }}$ and point P must have moved and achieved the height of point 1 ' of the circle
9. Accordingly, with C , as the centre and radius equal to $\frac{40}{2}=20 \mathrm{~mm}$ draw an arc to cut the horizontal line through 1 ' of the circle at P_{I}.
10. Similarly, get arc-line intersection points $P_{2}, P_{3}, \ldots P_{12}$ by drawing arcs with $C_{2}, C_{3} \ldots C_{12}$ as centres and radius equal to $\frac{40}{2}=20 \mathrm{~mm}$ to intersect with lines through $2^{\prime}, 3^{\prime}, \ldots, 1^{2}$ of circle respectively
11. Join $P_{1} P_{1}, P_{2}, \ldots, P_{12}$ by means of a smooth curve to get cycloid.
12. Mark point R on cycloid which is lying on a line 27 mm from the directing line.
13. Now with R as the centre and radius equal to $\frac{40}{2}=20 \mathrm{~mm}$, draw an arc to cut centre line $C_{1}-C_{12}$ at some point B : Through B, draw a line $B S$ perpendicular to the directing line $P A$ and cutting it at S.
14. S is the point of contact and B is the position of the centre of the generating circle when the generating point P is at R. Draw a line through R and S. This line is the
$M N$ at right angles to RS. MN is the tangent to the cycloid
Example 52 : A wheel of 56 mm diameter rolls downward on a vertical wall for half revolution and then on the horizontal floor for half revolution. Draw the locus of a point P on the circuimference of the wheel, the initial position of which is the contact point with the wall. Name the curve.

Refer Fig. 1.91

Navlakhi ${ }^{\circledR}$

Navlakhi ${ }^{\circledR}$

1.6.3 Involutes

Definition : It is a curre the Definition: H is ac
being kept tight: OR

It is a curve traced out by a point in a straight line which holls without slipping along a circle or a polygon.
Example 63: Draw an involute of a circle of 50 mm diameter. Also, drava a normal andtangent to it at a point
Example 65 . Draw an inglute 100 mm from the centre of the circle.
Refer Fig. 1.102

Engineering Drawing
83
Basic Graphical Techniques

Navlakhi ${ }^{\circledR}$

Engineering Drawing
84
Basic Graphical Techniques

Fig. 1.103
Procedure:
Draw a circle of 65 mm diameter and divide it into 12 equal parts and mark them as $1^{\prime}, 2^{\prime}, \ldots, 12^{\prime}$ Draw a line of length equal to the circumference of the circle as $\pi \mathrm{d}=\pi \times 65=204.29 \mathrm{~mm}$ and tangent to the circle. Divide this line into 12 equal parts and mark them as $1,2, . .12$.
Mark a position of point C on this tangent line such that $\mathrm{AC}=135 \mathrm{~mm}$. Observe that the C is a point lyin
inside the circumference length of tangent line.
Draw tangents to the circle at points $1^{\prime}, 2^{2} \ldots$ in
in the direction of position of string during unwindin
On tangents at points $1^{\prime}, 2$, .. ake length equal to arc length $A-1, A-2$, .. to mark points $A_{1}, A_{2}, .$. respectively.
6. Join points $A, A_{1}, A_{2}, .$, in sequence by a smooth curve to get required involute.
the procedure same as explained in example 63 , to get normal and tangent to the curve at a poin 100 mm from the centre of the circle.

Example 65 : An inelastic string 140 mm long, has its one end attached to the circumference of a circular disc of 35 mm diameter. Draw the curve traced out by the other end of the string, when it is completely wound around the disc, keeping the string always tigh
Engineering Drawing Refer Fig. 1.104

Fig. 1.104
Procedure :-

1. Foilow the procedure same as explained in example 63 winh a difference of location of point P , which is outside the circumference length of tangent line.

Example 66 : Construct one complete tum of an involute of a square of 30 mm side.
Refer Fig. 1.105
Procedure :-

1. Draw a square of 30 mm side and mark comers $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$,
2. Extend lines $4^{\prime} \mathrm{I}^{\prime}, 1^{\prime}, 2^{\prime}, 2^{\prime} 3^{\prime}$ and $3^{\prime} 4^{\prime}$ by suitable amount.
3. Draw quarter circles with centres $4,1,1^{\prime}, 2,3$ and radii equal to $R_{4}, R_{2}, R_{3}, R_{4}$ respectively to cut previously
4. Combination of these quarter circles $P_{P}, P_{1} P_{2}, P_{2} P_{3}, P_{3} P_{4}$ the required involute of a square.

Note: The same procedure is followed for a regular polygon, in order to get an involute of a polygon.

Navlakhi ${ }^{\text {® }}$

9820246760 / 9769479368

Procedure :

1. Locus of point B is shown as $B, B_{1}, B_{2}, \ldots B_{1}$.

Curve $B-B_{1}$ is an an
Curve $B_{B}-B_{2}$ is an arc of a circle with radius R, and centre as point 1 . (Coincident with point 2).
Curve $B_{2}-B_{\text {, }}$ is an arc of a circle with radius R, and centre as point 3 (

usual procedure of involute.
Curre $B_{0}-B_{x}$ is an arc of a circle with radius R_{4} and centre as point 9 .
1.6.4 Spirals

Definitions:-
Spiral : If a lintates in a plane about one of its ends and if at the same time, a poind moves along the line Spiral : 1 anly in one direction, the curve traced ofithy the moving point is called a spiral.
cont The point about which the line rotatcts is calied dpole. Each complete ry olution of t,
the Convolution. A spiral hmy make any number of corkolutions before reaching the pole.

Navlakhi ${ }^{\circledR}$

W.E. 10.3: Draw the helix of one convolution on a cylinder of diameter 80 mm and height equal to pitch of 100 mm .
The various steps in constructing the helix shown in Fig 10.11 are as follows:

1. Draw the top view and front view of the cylinder. Divide the circle in top view into 8 parts.
2. Indicate the lines in the front view and name them as shown.
3. Mark the pitch from the base on the axis and divide it also into 8 parts. Draw horizontals as shown.
4. Obtain the points of intersection of horizontal lines and vertical lines as shown.
5. Draw the helix by joining all the points visible by full lines and not visible by dotted. Indicate the points as P1 to P8.
Fig 10.11 (b) represents the development of the cylinder which is a rectangle, with the helix represented by the diagonal of the rectangle as shown. The angle made by the diagonal is called as helix angle.

Navlakhi ${ }^{\circledR}$

Chapter 己:

Prø \oplus ection $\oplus f$

LINES

Abhishek Navlakhi
(Tel: 9820246760 / 9769479368)

Projection of Straight Lines

$\mathbf{a}^{\prime} \mathbf{b}^{\prime}=\mathbf{F V}$ also horizontal at a (i.e. base of $\mathbf{a b}_{2}$)
$\mathbf{a b}=$ TV also horizontal at a' (i.e. base of $a^{\prime} b_{1}{ }^{\prime}$)
Navlakhi ${ }^{\text {® }}$
$\mathbf{a}^{\prime} \mathbf{b}^{\prime}{ }_{\mathbf{1}}=\mathbf{a b} \mathbf{b}_{\mathbf{2}}=\mathbf{T L}$
$\angle \mathbf{a}^{\prime} \mathbf{b}^{\prime}=\alpha=$ angle of front view
$\angle \mathbf{a b}=\beta=$ angle of top view
$\angle \mathbf{a}^{\prime} \mathbf{b}_{1}{ }^{\prime}=\boldsymbol{\theta}=$ angle with HP (seen in VP)
$\angle \mathbf{a b}_{2}=\varphi=$ angle with VP (seen in HP)
b^{\prime} and $b_{1}{ }^{\prime}$ on the same horizontal
b and b_{2} on the same horizontal
a and a^{\prime} on same vertical
b and b^{\prime} on the same vertical

1. A line PQ 100 mm long is inclined at 40° to H.P. and 30° to the V.P. The end P is 10 mm above H.P. and 25 mm in front of V.P. Assuming the end Q is in the first quadrant draw the projections of line PQ .
2. A line $P Q$ having its end $P 25 \mathrm{~mm}$ above H.P. and 20 mm in front of the V.P. The end Q is 85 mm above the H.P. and 50 mm in front of the V.P. The projector distance between these ends is equal to 80 mm . Draw the projections of PQ and show its true length, angle with the H.P. and angle with the V.P.
3. A line $\mathrm{AB}, 80 \mathrm{~mm}$ long is inclined at 45° to the H.P. and 30° to the V.P. Its end A is in H.P. and 40 mm in front of V.P. Draw its projections.
4. A line $\mathrm{AB}, 80 \mathrm{~mm}$ long is inclined at 30° to the H.P. and 45° to the V.P. Its end A is in H.P. and end B is in V.P. Draw the projections of line $A B$.
5. The top view of a 80 mm long line AB measures 50 mm . The point A is 50 mm in front of the V.P. and 20 mm above the H.P. The point B is 20 mm in front of the V.P. and is above the H.P. Draw the front view of $A B$ and find its inclination with the H.P. and the V.P.
6. A line $A B 75 \mathrm{~mm}$ long has its end A in the H.P. and 15 mm in front of the V.P. The end B is in the first quadrant. The line is inclined at 35° to the H.P. and 55° to the V.P. Draw its projections.
7. A line PQ has its end $P 15 \mathrm{~mm}$ above the H.P. and 25 mm in front of the V.P. The line makes an angle of 20° with the H.P. and its plan measures 90 mm . The end Q is in the first quadrant and is equidistant from both the reference planes. Obtain the projections of the line. Find the inclination of the line with the V.P.
8. End M of a line MN which is inclined at 46° to H.P. \& 20° to V.P. is 15 mm above the H.P. \& it is in front of the V.P., while the end N is 60 mm in front of V.P. \& is above H.P. Draw the projections of the line, find its true length, if its plan length is 70 mm . Locate the points of intersection of the line with the principal planes.
9. The top view \& front view of a line AB measures $70 \mathrm{~mm} \& 58 \mathrm{~mm}$ respectively. Line AB is inclined at 35° to H.P. The end A is 15 mm above H.P. \& 12 mm in front of V.P. The other end B is also in the first quadrant. Draw the projection of line AB , find its true length \& true inclination with V.P.
10. Front view of line PQ is 60 mm long \& inclined at 60° to xy line. The end A is 12 mm above H.P. \& 25 mm in front of V.P. Draw the projections of the line if it is inclined at 45° to the H.P. \& is located in the first dihedral angle. Find the true length \& true inclination of the line with the V.P.
11. The front view of the line CD is 50 mm long \& inclined at 60° to xy . The end point C is 10 mm above H.P. \& 20 mm in front of V.P. Draw the projections of the line if it is inclined at 45° to the V.P. \& is located in the first dihedral angle. Find the true length \& true inclination of the line with the H.P.
12. Line AB 100 mm long has its front view inclined at 45° to xy line. A is in V.P. \& 25 mm above H.P. The front view measures 60 mm . Draw the projections \& find true angle of inclination of line with H.P. \& V.P.

Navlakhi ${ }^{\oplus}$

13. Line AB measures $75 \mathrm{~mm} \&$ is in the first quadrant. Front view $\&$ top view are inclined are 45° to xy . End A is 20 mm in front of V.P. \& 30 mm above H.P. Draw the projections \& find true angle of inclination of line with H.P. \& V.P.
14. Top view of 75 mm long line AB measure 65 mm , while the length of its front view is 50 mm . End A is 10 mm above H.P. \& 15 mm in front of V.P. The other end is in third quadrant. Draw projections \& find inclination of line with H.P. \& V.P.
15. Line PQ 150 mm long has its end P 55 mm behind V.P. \& 35 mm below H.P. The line makes 30° with H.P. \& has a point on it contained in both the reference planes. Draw the projections; find the inclination with V.P. \& the distance of the point which lies in both the reference planes from end P.
16. Line AB 80 mm long is inclined at 30° to H.P. \& its top view makes 60° with $x y$. End A is in H.P. \& 12 mm behind V.P. Draw its front view \& its true inclination with V.P. Point B is below H.P. \& behind V.P.
17. Line PQ 80 mm long is inclined at 45° to H.P. \& 30° to V.P. Its end P is in H.P. \& 40 mm behind V.P. Draw its projections.
18. Line BC 80 mm long is in the second quadrant with end B in H.P. \& end C is V.P. The line is inclined at 30° to H.P. \& 45° to V.P. Draw its projections.
19. Top view of 80 mm long line AB measure 50 mm . Point A is 50 mm in front of V.P. \& 20 mm below H.P. Point B is 20 mm in front of V.P. \& is above H.P. Draw the front view of $\mathrm{AB} \&$ find its inclination with the H.P. \& V.P.
20. Line PQ 100 mm long is inclined at 40° to H.P. \& 20° to V.P. End P is in second quadrant \& Q in the fourth quadrant. A point R on $\mathrm{PQ}, 40 \mathrm{~mm}$ from P is in both the planes. Draw the projections of PQ.
21. Line AB 75 mm long has its end A in H.P. \& 15 mm behind V.P. End B is in first quadrant. AB is inclined at 35° to H.P. \& 55° to V.P. Draw its projections.
22. Line PQ has its end P 15 mm above H.P. \& 25 mm in front of V.P. PQ makes 20° with H.P. \& its plan measures 90 mm . Q is in the second quadrant $\&$ is equidistant from both the reference planes. Obtain projection of the line; find the inclination of PQ with V.P.
23. End projectors of line PQ are 80 mm apart. P is 20 mm above H.P. \& 60 mm behind V.P. Another point R on line PQ which divides the line in the ratio (PR:RQ) $3: 5$, lies in both the reference planes. Draw the projections; find its true length \& inclination with the reference planes. State the position of Q.
24. End projectors of line PQ are 90 mm apart. P is 25 mm behind V.P. \& 30 mm below H.P. PQ is inclined at 30° to H.P. \& 45° to V.P. Draw its projection when Q is in the second quadrant. Find its true length.
25. End M of line MN is inclined at 50° to H.P. \& 30° to V.P. \& is 15 mm below H.P. \& behind V.P., while N is 40 mm in front of V.P. \& above H.P. Draw its projections; find its true length, if its plan length is 70 mm .
26. The plan ab of a line AB is 140 mm long \& makes 45° with xy . End A is in V.P. \& 85 mm from H.P. End B is 20 mm from H.P. The whole line lies in the fourth quadrant. Draw its projection; find its true length \& inclinations with the reference planes.
27. Front view \& top view of line AB 125 mm long \& lying in third quadrant measures $75 \mathrm{~mm} \& 100 \mathrm{~mm}$ respectively. End A is 30 mm from both reference planes. Draw its projection \& find its inclination with H.P. \& V.P.
28. Line PQ 100 mm long is inclined at 30° to H.P. \& 45° to V.P. Its midpoint M is in the V.P. \& 20 mm above H.P. End P is in third quadrant \& end Q is in first quadrant. Draw its projections.
29. End A of line AB 90 mm long is in second quadrant \& 15 mm from both H.P. \& V.P. End B is in third quadrant. The line is inclined at 30° with H.P. \& the distance between the end projectors measured parallel to xy line is equal to 60 mm . Draw its projection; find its inclination with V.P.
30. A line $\mathrm{AB}, 80 \mathrm{~mm}$ long, makes an angle of 30° with the V.P. and lies in a plane perpendicular to both H.P. and the V.P. Its end A is in the H.P. and end B is in the V.P. Draw its projections.

Navlakhi ${ }^{\circledR}$

(By Abhishek Naviakhi)

Step 1: \rightarrow Base Edge in H.P.
True shape in H.P. with that edge perpendicular to xy
Base Line in V.P. on xy

Step 2:
\rightarrow Axis inclination
\rightarrow Slant Edge/ Generator in/on
H.P. then place the F.V. of that slant edge or generator on $x y$ (i.e.drop on $x y$).
\rightarrow Slant Edge/ Generator in/on V.P. then place the T.V. of that slant edge or generator on xy(i.e.drop on $x y$).
\rightarrow Face in/on H.P. then place the F.V. of that face on $x y$ (i.e.drop on $x y$).
\rightarrow Face in/on V.P. then place the
T.V. of that face on xy (i.e.drop on xy).
\rightarrow Lifting of the base line (lifting of the base line of step 1)

Step 3:
\rightarrow Base Edge Angle
\rightarrow Any other detail obtained by rotation

Note: Locus may be required.

Navlakhi ${ }^{\circledR}$

Chapter ヨ:

Pr由jecti $\oplus \mathrm{N} \oplus F$

S \oplus LIDS

Abhishek Navlakhi
(Tel: 9820246760 / 9769479368)

1. Draw the projections of a pentagonal pyramid, base 30 mm edge \& axis 60 mm long, having its base parallel to the H.P. \& an edge of the base perpendicular to the V.P.
2. Draw the projections of a cylinder of base 50 mm diameter \& axis 75 mm long \& having its axis perpendicular to the V.P.
3. Draw the projections of a triangular prism, base 50 mm edge \& axis 70 mm long \& having its axis parallel to both the H.P. \& the V.P. Also the edge of the base perpendicular to the V.P.
4. Draw the projections of a cone, base 60 mm diameter \& axis 80 mm long, when it is resting on the H.P. on a point on its base circle with the axis making an angle of 30° with the H.P. \& parallel to the V.P.
5. Draw the projections of a hexagonal prism, base 30 mm \& axis 70 mm long, when its axis is inclined at 30° to the V.P. \& parallel to the H.P. An edge of the base is perpendicular to the H.P.
6. Draw the plan \& elevation of a right circular cylinder 50 mm diameter of base \& 90 mm long, when its axis is inclined at 50° to the H.P. \& 17° to V.P. Assume the object is in the third quadrant.
7. A pentagonal pyramid, base 25 mm side \& axis 50 mm long has edge of the base parallel to the H.P. \& inclined at 45° to the V.P. Its axis makes an angle of 60° with the H.P. Draw its projections.
8. A tetrahedron of 60 mm long edges has one edge parallel to the H.P. \& inclined at 45° to V.P. while the face containing that edge is vertical. Draw its projections.
9. A pentagonal prism of base $30 \mathrm{~mm} \&$ axis 65 mm long is resting on a corner of its base on the ground with a longer edge containing that corner inclined at 45° to the H.P. \& vertical plane containing that edge \& the axis inclined at 30° to the V.P. Draw its projections.
10. A hexagonal pyramid, side of base 50 mm \& height 90 mm rests on one of the edges of its base on H.P., the base being tilted up until the vertex is 60 mm above the H.P. Draw the projections of the pyramid with the edge on which it is resting made inclined at 60° to the V.P. Draw its projections.
11. A cube of 60 mm sides is resting on the ground on one of its corners, with one of the solid diagonal parallel to the H.P. \& inclined at 45° with the V.P. Draw the projections of the cube assuming it is in the third quadrant.
12. Draw the projections of a cone base 50 mm diameter \& axis 80 mm long, having one of its generators in the V.P. \& inclined at 30° to the H.P., the apex being in the H.P.
13. A cylindrical disc of 70 mm diameter \& 35 mm length of axis has its axis inclined at 30° to the H.P. \& plan of axis inclined at 40° to the V.P. Draw its projections.
14. A triangular prism 20 mm side of base \& 50 mm long rests with one of its shorter edge on the ground such that the rectangular face containing that edge on which the prism rests is inclined at 30° to the ground. The edge on which the prism rests is inclined at 60° to the V.P. Draw its projections.
15. A tetrahedron of 70 mm long edge stands on one of its edges in the H.P. with its plane making an angle of 35° with the H.P. The edge of the tetrahedron in the H.P. makes an angle of 35° to the V.P. Draw the projections of the tetrahedron.
16. A square pyramid of base 40 mm side $\&$ axis 80 mm long has one of its triangular faces in the V.P. \& edge of its base contained by that face makes an angle of 30° with the H.P. Draw the projections
17. A frustrum of a pentagonal pyramid base 50 mm side, top 25 mm side \& axis 70 mm long, has its side of the smaller pentagon in the V.P. making an angle of 30° to the H.P. Draw the projections of the solid when its axis is inclined at 60° to the V.P.
18. A cone, 60 mm diameter of base \& 70 mm height has one of its generators in the H.P. \& making an angle of 45° with the V.P. The apex is towards the observer. Draw the projections of the solid.
19. A square prism, side of base 40 mm \& axis 70 mm is resting on one of the corners of its base on the ground. Draw the projections of the prism when one of its solid diagonal is parallel to the H.P. \& inclined at 30° with the V.P. Assume the object to be in the third quadrant.
20.A pentagonal pyramid side of base 40 mm height 60 mm is held with the corner of the base on V.P. \& the slant edge through that corner perpendicular to V.P. Draw the projections of the pyramid if the plane containing the axis and the above slant edge is inclined to H.P. at 40°.
20. A hexagonal pyramid of 35 mm side of the base \& 70 mm length of axis is having a corner of its base on ground. The axis makes 40° with the H.P. The plane containing the axis \& corner of base on ground is perpendicular to H.P. \& is inclined at 45° with V.P. Draw the projections of the pyramid as the apex is away from the observer.
21. Draw the projections of a tetrahedron edge 60 mm long, resting on a corner on ground with opposite edge parallel to H.P. \& inclined at 45° to the V.P. The edge through the corner on ground is inclined at 45° to the H.P.
22. A triangular pyramid, 50 mm side of base \& 70 mm height of axis, is suspended by a string attached to one of the corners of its base. Draw the projections of the pyramid if the angle made by the slant edge from the point of suspension is 20° with the V.P., the apex being nearer to the observer.
24.A right circular cone, diameter of base circle is 60 mm \& height 80 mm rests on its rim on the ground with the vertex 55 mm above the ground. The axis of the cone makes an angle of 45° with the V.P. Draw its projections when vertex is in V.P.
25.A regular pentagonal pyramid of base edge 40 mm \& length of axis 75 mm is held on a corner of its base on ground with the triangular face opposite to it horizontal. Draw the projections of the pyramid when the apex is nearest to the observer.
23. A cone of diameter 80 mm \& height 90 mm is suspended by a string attached to the mid - point of any one of its generators. Draw the projections of the solid when the axis makes 30° with the V.P., the vertex being away from the observer. Find the inclination of the axis with the H.P.
27.A hexagonal pyramid, edge of base 30 mm \& length of axis 70 mm has a slant edge on the ground making an angle of 45° with the V.P. Draw the projections of the solid.
24. Draw the plan \& elevation of a cube of solid diagonal 80 mm length when the solid diagonal is perpendicular to the V.P. \& a corner of the cube is in the H.P.
25. A cone of 70 mm length of axis is resting on one of its generators, while its axis is inclined at 45° to the V.P. \& the apex is nearer to the V.P. Draw the projections of this cone if the generators of this cone are inclined at 60° to the base.
26. Frustrum of a square pyramid, top base side 20 mm , bottom base side 60 mm \& axis length 70 mm has one of its bottom base sides in the H.P. \& parallel to the V.P. while the trapezoidal face containing that base side is vertical \& away from the observer. Draw the plan \& elevation of the frustrum.
27. A cone of base 50 mm diameter \& axis 70 mm long is lying on one of its generators on the ground with the top view of the axis making an angle of 45° with the V.P. Draw its projections
32.A pentagonal pyramid has a corner of its base on the H.P. with the triangular face opposite to it inclined at 45° to the H.P. \& a slant edge within that triangular face inclined at 30° to the V.P. Draw the projections of the pyramid if edges of its base is 30 mm \& axis is 65 mm long.
33.A frustrum of a cone, having bottom base diameter 70 mm , top base diameter 30 mm \& axis 50 mm long is resting on one of its generator on the ground. Its axis is inclined at 45° to the V.P. Draw its projections.
34.A pentagonal pyramid side of base 35 mm \& axis 70 mm long is lying on one of its corners on the H.P. such that the two base edges passing through the corner on which it rests makes equal inclinations with the H.P. One of its triangular surfaces is parallel to the H.P. \& perpendicular to the V.P. \& the base edge containing that triangular surface is parallel to both H.P. \& V.P. Draw the projections of the solid when the apex of the pyramid is nearer to the observer.
$35 . A$ square pyramid of side of base 35 mm is resting with its apex on the ground such that the inclined edge connecting the apex to one of the corners of the base is vertical \& that the triangular face bounded by the vertical edge is perpendicular to the V.P. Draw the projections.
28. Draw three views of a cone having base 60 mm diameter \& axis 60 mm long. D is resting on the ground on a point on its base circle. The axis is inclined at 40° to the ground \& 30° to the V.P.
37.A regular tetrahedron, edge of base 30 mm is held on H.P. on a corner of its base such that the slant edge containing the corner is inclined at 60° to the H.P. \& edge of base opposite the resting corner makes an angle of 45° to the V.P. Draw the projections.
29. Draw the projections of a square prism resting on an edge of the base in H.P. The axis makes an angle of 30° with V.P. \& 45° with H.P. Take edge of base as 25 mm \& axis length 125 mm .
30. The body diagonal of a cube is 75 mm long \& is resting on one of its corners on the ground with the body diagonal perpendicular to the H.P. Draw its projections \& find the length of the edges of the cube.
40.A pentagonal pyramid with side of base 20 mm \& height 80 mm is freely suspended from one of the corners of the base in such a manner that the pyramid is inclined at 30° to the V.P. Draw the projections of the pyramid.
31. A tetrahedron of 75 mm long edges having one edge parallel to the H.P. \& inclined at 45° to the V.P. while a face containing that edge is vertical. Draw its three views.
32. A pentagonal pyramid, base 40 mm side \& height 75 mm rests on one edge of its base on the ground so that the highest point in the base is 25 mm above the ground. Draw its projections when the axis is parallel to the V.P. Draw another front view on the auxiliary vertical plane inclined at an angle of 30° to the edge on which it is resting so that the base is visible.
33. Draw the projections of a pentagonal pyramid, side of base 40 mm \& height 70 mm resting in the corner of its base. The slant edge containing that corner makes an angle of 60° to the H.P. Plane containing the axis \& that slant edge makes an angle of 45° with the V.P.

Navlakhi ${ }^{\circledR}$

Chapter L:

S \oplus Lids

By
 Abhishek Navlakhi
 (Tel: 9820246760 / 9769479368)

Section of Solids

1. A hexagonal prism, side of base $30 \mathrm{~mm} \&$ height 80 mm is resting on one of its corners on the H.P. with a longer edge containing that corner inclined at 60° to the H.P. \& a rectangular face parallel to the V.P. A horizontal section plane passes through the midpoint cuts the prism of axis in two pieces. Draw the front view \& sectional top view of the cut prism.
2. A square pyramid, base 40 mm side $\& 80 \mathrm{~mm}$ height stands vertically on the H.P. with the edges of the base equally inclined to the V.P. The cutting plane, parallel to the V.P. \& 15 mm away from the axis of the pyramid \& nearer to the observer cuts the solid. Draw the sectional elevation \& plan of the pyramid.
3. A tetrahedron of 70 mm long edges is resting on its base in the H.P. with an edge contained by that base perpendicular to the V.P. A section plane which is perpendicular to both the H.P. \& the V.P. cuts this solid \& which is 15 mm away from the axis of tetrahedron $\&$ nearer to the observer. Draw its front view, top view \& sectional side view.
4. A cube of 75 mm long edges has its vertical face equally inclined to the V.P. It is cut by a section plane perpendicular to the V.P., so that the true shape of the section is a regular hexagon. Determine the inclination of the cutting plane with the H.P. \& draw the sectional top view \& true shape of the section.
5. A hexagonal pyramid has 50 mm side \& axis 100 mm long, is lying on the H.P. on one of its triangular faces with the axis parallel to the V.P. A vertical section plane, the H.T. of which makes an angle of 30° with the reference line, passes through the centre of the base $\&$ cuts the pyramid, the apex being retained. Draw the top view, sectional front view \& true shape of the section.
6. A pentagonal pyramid of base 50 mm side $\&$ axis 100 mm long is resting on the H.P. on its base, with an edge perpendicular to the V.P. It is cut by a sectional plane which is perpendicular to the P.P. \& inclined at 30° to the H.P. The section plane is passing through the mid - point of the axis. Draw the sectional elevation, sectional plan \& true shape of the section.
7. A square pyramid base 40 mm side \& axis 70 mm long, is resting on the H.P. on one of its triangular faces, the top view of the axis making an angle of 25° with the V.P. It is cut by a horizontal section plane, the V.T. of which intersects the axis at a point 8 mm from the base. Draw the front view, sectional top view.
8. A square pyramid of sides of base 70 mm \& length of axis 100 mm is placed with one of its triangular faces on the ground with axis parallel to V.P. It is cut by an AVP passing through the C.G. of the solid \& inclined at 30° to V.P. \& removing the apex. Draw sectional elevation, plan \& show the true shape of the section.
9. A cone 70 mm diameter of base $\& 100 \mathrm{~mm}$ height is resting on the ground on its curved face with its axis parallel to the V.P. It is cut by an A.I.P. inclined at 30° to the H.P. \& passing through a point on the axis 5 mm from the base. Draw the projections if the apex is retained. Project the true shape of the section.
10. A cone of diameter of base $60 \mathrm{~mm} \&$ axis 80 mm rests on the H.P. on a point of its base. The axis of cone makes 60° with H.P. \& parallel to V.P. The cone is cut by a vertical cutting plane passing through the mid - point of the axis making an angle of 45° with V.P. Draw the projections of the solid when smaller part is removed. Also draw the true shape of the section.
11. A rectangular prism with sides of base $40 \mathrm{~mm} \& 60 \mathrm{~mm}$ has height of $65 \mathrm{~mm} \&$ stands on the ground on its base with longer side of the base inclined to the V.P. at 30°. An A.I.P. inclined at 45° to the ground cuts the solid \& passes through the point on the axis 20 mm below the top face. Draw the sectional top view, sectional side view \& true shape of the cut surface.
12. A hexagonal prism, side of base 25 mm \& axis 65 mm long is resting on an edge of the base on the V.P. Its axis is inclined at 60° to the V.P. \& parallel to the H.P. A section plane inclined at 45° to the V.P. \& normal to the H.P. cuts the prism \& passes through a point on the axis at a distance of 25 mm from the top end. Draw the projections, sectional front view \& true shape of the section.
13. A semi - cone of diameter $80 \mathrm{~mm} \& 90 \mathrm{~mm}$ axis length is resting on its semi circular base on H.P. such that the triangular face of the semi - cone is parallel to the V.P. \& away from the observer. It is cut by a section plane perpendicular to the V.P. \& inclined at 45° to the H.P. passing through the midpoint of the axis. Draw the sectional plan, elevation $\&$ true shape of the section. Also add the right hand side view which gives the sectional detail on it.
14. A cone, base 70 mm diameter \& axis 70 mm long, has its axis parallel to the V.P. \& inclined at 45° to the H.P. A horizontal section plane cuts the cone through the mid - point of the axis. Draw the front view, sectional top view.
15. A vertical cone, diameter of base 80 mm is resting on its base on the ground. It is cut by an A.I.P. so that true shape of the section is an equilateral triangle with 70 mm side. Determine the length of the axis of the cone \& draw the three views.
16. A cone diameter of base $50 \mathrm{~mm} \&$ axis 60 mm long is resting on its base on the ground. It is cut by a section plane perpendicular to both the reference planes in such a way that the true shape of the section is a hyperbola having 40 mm base. Draw the front view, top view \& sectional view.
17. A cone diameter of base 50 mm , height 50 mm is cut by an A.I.P. such that the true shape of the cut surface is a parabola of height 45 mm . Draw its projections when it is placed on its cut surface on the H.P.
18. A cone diameter of base 80 mm is cut in such a way that true shape is an isosceles triangle of 50 mm base \& 70 mm altitude. Draw projections of the larger piece when it is placed on the ground on its cut surface.
19. A cone of base diameter $80 \mathrm{~mm} \& 90 \mathrm{~mm}$ height is resting on the H.P. on its base. It is cut by an A.I.P. in such a way that the true shape of the cut surface is a parabola of 55 mm axis length. Draw the F.V. \& the T.V. of the remaining portion of the cone. Show also the true shape of the section.
20. A right circular cone of diameter 60 mm \& length of axis 60 mm is resting on H.P. on its base. It is cut by a cutting plane perpendicular to the V.P. \& inclined to H.P. such that the true shape is a parabola of height 60 mm . Draw the front view, sectional top view \& true shape of the section. Measure the angle made by the cutting plane to the H.P.

A cylinder of 50 mm diameter of base \& 75 mm length of axis, has one of its ends on the H.P. It is cut by an A.I.P. in such a way that the true shape of the section is an ellipse of largest possible major axis. Draw the sectional plan, true shape of the section \& find inclination of the section plane with the H.P.
22. A semi - cylinder of 60 mm diameter is resting on its rectangular surface on the ground such that its axis is perpendicular to the V.P. It is cut by a plane perpendicular to both the reference planes so that the true shape of the section is a rectangle of 70 mm X 20 mm . Draw the three views.
23. A vertical cylinder of 50 mm diameter is cut by an A.V.P. making 20° to V.P. in such a way that the true shape of the section is a rectangle of $34 \mathrm{~mm} \& 80 \mathrm{~mm}$ sides. Draw the projections \& true shape of the section.
24. A tetrahedron of 60 mm long edges is lying on the H.P. on one of its faces, with an edge perpendicular to the V.P. It is cut by a section plane which is perpendicular to the V.P. so that the true shape of the section is an isosceles triangle of base 45 mm long \& altitude 35 mm . Find the inclination of the section plane with the H.P. \& draw the elevation, sectional plan \& true shape of the section.
25. ABCD is a tetrahedron of 70 mm long edges. The face ABC is on the H.P. with edge AB perpendicular to V.P. The solid is cut by an A.I.P. in such a way that the true shape of the section is a trapezoid of parallel sides $40 \mathrm{~mm} \& 18 \mathrm{~mm}$. Draw the projections of the solid, sectional plan \& true shape of the section. Find the inclination of the cutting plane with the H.P.
26. A triangular prism 60 mm edge of base, 50 mm height stands on its triangular face on ground, with one of its rectangular faces inclined to V.P. at 30°. It is cut by an A.I.P. such that the true shape of the section is a trapezium of $10 \mathrm{~mm} \& 50 \mathrm{~mm}$ parallel sides. Draw its projections when it rests on its cut surface on ground.
27. The true section of the vertical square prism cut by an inclined plane is a rhombus of $40 \mathrm{~mm} \& 80 \mathrm{~mm}$ long diagonals. The plane cuts one of its longer edges at a height of 20 mm from the base. Find the inclination of the cutting plane with the H.P. \& draw the front view, sectional top view \& true shape of the section.
28. A cube of side 40 mm is lying on the H.P. on its square base. It is cut by a section plane such that the true shape of the section is a trapezium of parallel sides equal to the length of the diagonal of the square face for one side \& half of that length for the other side. Draw the front view, sectional top view \& true shape of the section. Measure the angle made by the cutting plane with the H.P. Measure the angle made by cutting plane with the H.P.
29. A pentagonal pyramid side of base $35 \mathrm{~mm} \&$ height 70 mm rests on its base in H.P. with one side of its base perpendicular to V.P. It is cut by sectional plane such that:
a. The true shape of the section is an isosceles triangle of maximum base \& minimum height
b. The true shape of the section is an isosceles triangle of maximum base \& maximum height
c. The true shape of the section is an equilateral triangle of maximum side.
Locate the position of section planes in all the above cases \& find the true shape of the section in each case.
30.A square pyramid of 60 mm side of base \& 70 mm length of axis is resting on its base on the ground, having a side of base perpendicular of the V.P. It is cut by two cutting planes; one is parallel to its extreme right face \& 10 mm away from it while the other plane is parallel to the extreme left face. Both cutting planes intersect each other on the axis of the pyramid. Draw the sectional top view, front view \& project the side view.

Navlakhi ${ }^{\circledR}$

Chapter 5:

 - DeVel@Pilient $\oplus F$Surfaces

By
 Abhishek Navlakhi

(Tel: 9820246760 / 9769479368)

Development of Surfaces

1.

A hexagonal pyramid of 25 mm edge of the base and axis 50 mm long is resting on its triangular face in H.P. with the axis parallel to the V.P.It is cut by a section plane perpendicular to the H.P.inclined at 30° to the V.P. and passing through a point on the axis 20 mm from the base Draw top view, sectional front view and true shape of the section when the apex is removed.

A hexagonal pyramid base 25 mm side, axis 55 mm long has its base on HP, with an edge of base parallel to VP. A section plane perpendicular to VP and inclined at 60 degrees to HP bisects the axis of the pyramid. Draw FV, sectional TV, true shape of the section and Development of Lateral Surface of pyramid removing apex.
3.

A right circular cone of base circie diameter 50 mm and axis 60 mm long is resting on its base on HP. It is cuit by a section plane which is perpendicular to VP and inclined to HP such that the plane is parallel to the end generator and 10 mm away from it. Draw the front view, the sectional top view and the true shape of section. Also draw the development of the cone after removing the portion containing tie apex.
4.

A cylinder, 40 mm diameter ang 100 mm long is resting on its base on HP. It is cut by a section plane perpendicular to VP, inclined at 45° to HP and passing through the midpoint of the axis. Draw the front view, sectional top view and true shape of the section diso develop the lateral surface of the cut cylinder.
5.

$$
\begin{aligned}
& \text { A cone of diameter } 60 \mathrm{~mm} \text { and height } 75 \mathrm{~mm} \text { is resting on H.P. on its base, it is cut by a section } \\
& \text { plane inclined to HP and perpendicular io VP such that the true shape of the section is a } \\
& \text { parabola with axis is equal to } 60 \mathrm{~mm} \text {. Draw, }
\end{aligned}
$$

i) Front view (ii) Sectional Top víew (iii)True shape of section
ii) Develop the lateral surfaces of the retained portion of the cone after section.
6.

A cone of base 70 mm diameter and axis 90 mm long is festing on its base on HP. It is cut by a section plane perpendicular to the dP and paraller to and 15 mm away from one of its end generators. Draw the sectional top view, front view \& sectional side view. Also draw the true shapeof the section. Also draw development of the lateral surface of the cone.
7.

A right circular vertical cone, base diameter 50 mm and axis 60 mm long is cut by an AIP and bisecting the axis. Draw Front View, Sectional Top View and True Shape of the Section if True Shape of the Section is an ellipse with major axis is 40 mm . What is the inclination of the cutting plane with H.P.? Also draw Development of Lateral Surface of remaining portion of the solid.
8.

A hexagonal pyramid of side of base 40 mm and axis length of 70 mm is resting on its base on HP with two base edges perpendicular to VP. It is cut by an auxiliary inclined plane 60° to HP and passing through a point on the axis 40 mm above the base. Draw the front view, sectional top view and the true shape of the section. Also draw the development of the lateral surface of the cut iyramid after removing the portion containing the apex.
9.

A square pyramid of base side 25 mm and altitude 50 mm rests on its base on the HP with two sides of the base parallel to VP. It is cut by a plane bisecting the axis and inclined at 30° to the base. Draw front view, sectional top view and true shape of the section. Also draw the development of the lower part of the pyramid. 15
10.

A square pyramid of base side 25 mm and altitude 50 mm rests on its base on the HP with two sides of the base parallel to VP. It is cut by a plane bisecting the axis and inclined at 30° to the base. Draw front view, sectional top view and true shape of the section. Also draw the development of the lower part of the pyramid. \qquad
11.

A cone of 70 mm height of axis and base diameter 60 mm is resting on its base on H.P. It is cut by a section plane parallel to one of its end generators and 12 mm away from it. Draw development of lateral surface of truncated solid.
12.

A cone of base diameter 50 mm and axis height 65 mm is resting on HP on one of its generators with axis parallel to the VP. It is cut by A.I.P. such that the true shape of the section is a parabola with the axis length equal to 60 mm . Draw the projections of cut solid \& also draw development of lateral surface of remaining part of the cone (apex is removed).

Navlakhi ${ }^{\circledR}$

Chapter E:

$\oplus R T H \oplus G R A P H I C$

Pr由jections

Abhishek Navlakhi

(Tel: 9820246760 / 9769479368)
(1) Fig. 18-23:
(i) Front view.
(ii) Side view.
(iii) Top view.

(2) Fig. 18-24:
(i) Front view.
(ii) Side view from the left.
(iii) Top view.

(3) Fig. 18-25: (i) Front view. (ii) Side view. (iii) Top view.

Fig. 18-25
(4) Fig. 18-26: (i) Front view. (ii) Side view from the left. (iii) Top view. Use first-angle projection method.

Fig. 18-26

FIG. 18-27
(5) Fig. 18-27: (i) Front view. (ii) Both side views. (iii) Top view.

Fig. 18-28
(6) Fig. 18-28: (i) Front view. (ii). Side view. (iii) Top view. Use first-angle projection method.
(14) Fig. 18-36:
(i) Front view.
(ii) Side view from the right.
(iii) Top view.

Use first-angle projection method.

(15) Fig. 18-37: (i) Front view. (ii) Side view. (iii) Top view.

Fig. 18-37
(16) Fig. 18-38: (i) Front view. (ii) Side view. (iii) Top view.

Fig. 18-38
(19) Fig. 18-41:
(i) Front view.
(ii) Both side views.
(iii) Top view.

Use first-angle projection method.

(18) Fig. 18-40:
(i) Front view.
(ii) Side view from the right.
(iii) Top view.

(20) Fig. 18-42: (i) Front view. (ii) Side view from the right.
(iii) Top view.

Fig. 18-42
(21) Fig. 18-43: All the six views.
(22) Fig. 18-44: (i) Front view. (ii) Side view from the left. (iii) Top view.

FIG. 18-44
(23) Fig. 18-45: (i) Front view. (ii) Both side views. (iii) Top view.

Fig. 18-45
(24) Fig. 18-46: All the six views according to first-angle projection method.

Fig. 18-9

(29) Fig. 18-51: (i) Front view. (ii) Side view from the right. (iii) Top view.

Fig. 18-51
(30) Fig. 18-52: (i) Front view. (ii) Side view from the left. (iii) Top view. Use first-angle projection method.
 view.

Fig. 18-53
9820246760 / 9769479368
Example Using First Angle Projection Method draw -
(a) Front View (b) Top View and (c) Right Hand Side View for the following object.

Example Figure shows the pictorial view of a machine block. Draw the following views: (i) Front View looking in the direction of arrow X. (ii) Top view. (iii) Left Hand Side View. Show all hidden details. Use 1:1 scale.

Exaphle Figure shows the pictorial view of a machine block. Draw the following views: (i) Front View boking in the direction of arrow F. (ii) Top View; (iii) Left Side View. Show all the hidden details. Use 1:1 scale.

Navlakhi ${ }^{\circledR}$

Chapter 7:

 Sectịnal\oplus RTH \oplus GRAPHIC

Abhishek Navlakhi
(Tel: 9820246760 / 9769479368)

Pictorial view of a block is shown in ine figure. Draw the following views using First Angle Projection Method.
(i) Front View in the direction of arrow X . (ii) Sectional Side view from right.

Using Third Angle Projection Method draw .
(a) Sectional Front View; (b) Top View and (c) R.H. Side View for the following object.
 the direction of arrow X; (ii) Top View; (iii) Left Hand Side View. Use First Angle Projection Method only

Figure shows the pictorial view of a machine part. Draw the following views using $1: 1$ scale: (i) Sectional Front View along S-S looking in the direction of arrow F; (ii) Top View; (iii) Left Side View. Show all the hidden details.

Navlakhi ${ }^{\text {® }}$

Figure shows the pictorial view of a machine part. Draw the following views using $1: 1$ scale: (i) Sectional Front View along S-S looking in the direction of arrow F; (ii) Top View; (iii) Left Side View. Show all the hidden details

Figure shows the isometric view of a block. Draw the following : (i) Sectional Front View looking along arrow Y (Section B-B); (ii) Top View; (iii) Right Side View. Use First Angle Method of Projection only.

For the object shown, draw the following views using First Angle Method of Projection
(a) Front View in the direction X, (b) Top View, (c) Left Hand Side View. Show ail the dimensions.

Figure below shows a Block. Using first angle method the following
(a) Sectional front view on B-B,
(b) Top view,
(c) Side view from left.
insert important dimensions.

Navlakhi ${ }^{\text {® }}$ B-B; (iii) Left Hand Side View with all hidden details.

Figure shows object. Draw to scale the following :-
(i) Front view.
(ii) Sectional side view from left on section A-B.
(8)
(iii) Sectional top view on section C-D.

$\eta \alpha v \lambda \alpha \kappa \hbar i$

Navlakhi ${ }^{\circledR}$

Chapter B:

 IS \oplus Пletric Projectimns
Abhishek Navlakhi
(Tel: 9820246760 / 9769479368)

navla
F.V.

Front view

Frond view. Lett side view

* All dimensions are in mm.
* All dimensions are in mm.
* All dimensions are in mm.

Front view Left'side view

7. Front view and lett hand side view of an object is shown in figure. Draw the isometric view using natural 10 scale use " O " as the starting point.

