(1) An electron in an atom revolves around the nucleus in an orbit of radius 0.53 Å. Calculate the equivalent magnetic moment, if the frequency of revolution of electron is 6.8 × 10⁹ MHz (Given: e = 1.6 × 10⁻¹⁹).

Soln
$$\Gamma = 0.53 \times 10^{-10} \text{m}$$

$$M_0 = ?$$

$$f = 6.8 \times 10^{-19} \text{Hz}$$

$$e = 1.6 \times 10^{-19} \text{C}$$

$$M_0 = \frac{\text{evr}}{2} = \frac{\text{er}}{2} \cdot \frac{2\pi r}{7} = \pi \text{er}^2 + \frac{1}{2} \cdot \frac{1}{2} \times \frac{1}{2} \times$$

(2) The electron in the hydrogen atom is moving with a speed at 2.3 × 10⁶ m/s in an orbit of radius 0.53 Å. Calculate the magnetic moment of the revolving electron.

Solvi = 2.3 × 10 bm/s

$$V = 0.53 \times 10^{-10} \text{m}$$

 $M_0 = 7$
 $M_0 = ev = 1.1 \times 10^{-19} \times 2.3 \times 10^{-10} \times 0.53 \times 10^{-10}$
 $= 9.752 \times 10^{-24} \text{Am}^2$

The space within a current carrying toroid is filled with tungston of susceptibility 6.8×10^{-5} . What is the percent increase in the magnetic field B?

Solu

$$\chi = 6.8 \times 10^{-5}$$

 $haye = \frac{B-B_0}{B_0} \times 100$
= $\frac{100(1+\chi)H - 10H}{100H} \times 100$
= $\chi \times 100$
= $6.8 \times 10^{-3} \%$

Find the magnetization of a bar magnet of length 5 cm and cross-sectional area 2 cm², if the magnetic moment is 1 Am².

$$S0/4 = 0.05m$$

$$A = 2 \times 10^{-4} m^{2}$$

$$M = 1 A m^{2}$$

$$MZ = \frac{M}{100} = \frac{M}{4 \times 10^{-4}}$$

$$= \frac{1}{2 \times 10^{-4} \times 0.05} = 10^{5} A/m$$

(1) A circular coil of 300 turns and diameter 14 cm carries a current of 15A. What is the magnitude of magnetic moment associated with the coil?

 $(Ans: 69.27 Am^2)$

(2) An electron in an atom revolves around the nucleus in an orbit of radius 0.5A. Calculate the equivalent magnetic moment, if the frequency of revolution of electron is 10¹⁰ MHz

 $(Ans: 1.257 \times 10^{-23} Am^2)$

(3) Find the percent increase in the magnetic field B when the space within a current-carrying toroid is filled with aluminum. The susceptibility of aluminum is 2.1 × 10⁻⁵.

(Ans.: 2.1×10^{-3})

(4) A bar magnet made of steel has magnetic moment of 2.5 Am² and a mass of 6.6 × 10⁻³ kg. If the density of steel is 7.9 × 10³ kg/m³, find the intensity of magnetization of the magnet.

 $(Ans: 3.0 \times 10^6 \text{ A/m})$

(5) The susceptibility of annealed iron at saturation is 5500. Find the permeability of annealed iron at saturation.

(Ans.: 6.9×10^{-3})

(6) The susceptibility of magnesium at 300 K is 1.2×10^{-5} . At what temperature will the susceptibility increase to 1.8×10^{-5} ?

(Ans: 200 K)

(7) The magnetic field B and the magnetic intensity H in a material are found to be 1.6 T and 1000 A/m respectively. Calculate the relative permeability 'μ_r' and the susceptibility 'χ' of the material?

(Ans.: 1.273×10^3 , 1272)

